Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38711294

RESUMO

Coupling renewable electricity to reduce carbon dioxide (CO2) electrochemically into carbon feedstocks offers a promising pathway to produce chemical fuels sustainably. While there has been success in developing materials and theory for CO2 reduction, the widespread deployment of CO2 electrolyzers has been hindered by challenges in the reactor design and operational stability due to CO2 crossover and (bi)carbonate salt precipitation. Herein, we design asymmetrical bipolar membranes assembled into a zero-gap CO2 electrolyzer fed with pure water, solving both challenges. By investigating and optimizing the anion-exchange-layer thickness, cathode differential pressure, and cell temperature, the forward-bias bipolar membrane CO2 electrolyzer achieves a CO faradic efficiency over 80% with a partial current density over 200 mA cm-2 at less than 3.0 V with negligible CO2 crossover. In addition, this electrolyzer achieves 0.61 and 2.1 mV h-1 decay rates at 150 and 300 mA cm-2 for 200 and 100 h, respectively. Postmortem analysis indicates that the deterioration of catalyst/polymer-electrolyte interfaces resulted from catalyst structural change, and ionomer degradation at reductive potential shows the decay mechanism. All these results point to the future research direction and show a promising pathway to deploy CO2 electrolyzers at scale for industrial applications.

2.
Macromol Rapid Commun ; : e2300680, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461409

RESUMO

The porous structure of microgels significantly influences their properties and, thus, their suitability for various applications, in particular as building blocks for tissue scaffolds. Porosity is one of the crucial features for microgel-cell interactions and significantly increases the cells' accumulation and proliferation. Consequently, tailoring the porosity of microgels in an effortless way is important but still challenging, especially for nonspherical microgels. This work presents a straightforward procedure to fabricate complex-shaped poly(N-isopropyl acrylamide) (PNIPAM) microgels with tuned porous structures using the so-called cononsolvency effect during microgel polymerization. Therefore, the classical solvent in the reaction solution is exchanged from water to water-methanol mixtures in a stop-flow lithography process. For cylindrical microgels with a higher methanol content during fabrication, a greater degree of collapsing is observed, and their aspect ratio increases. Furthermore, the collapsing and swelling velocities change with the methanol content, indicating a modified porous structure, which is confirmed by electron microscopy micrographs. Furthermore, swelling patterns of the microgel variants occur during cooling, revealing their thermal response as a highly heterogeneous process. These results show a novel procedure to fabricate PNIPAM microgels of any elongated 2D shape with tailored porous structure and thermoresponsiveness by introducing the cononsolvency effect during stop-flow lithography polymerization.

3.
HardwareX ; 17: e00506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497030

RESUMO

Photocatalytic water treatment is considered a promising technique to prevent micropollutants from entering the environment. However, no off-the-shelf UV reactors on lab scale are available to study new processes and photocatalysts. In this study, we present a tubular UV reactor equipped with 30 UV-LEDs, emitting UV light at 367 nm and a total radiant flux of 42 W. The UV reactor has an irradiated length of 300 mm and can host any transparent chemical reactor on the inside with a maximum diameter of 28 mm. The device is optimized for lab experiments with total dimensions of just 334 mm x 193 mm x 172 mm. Besides water treatment, a broad range of other photochemical and photocatalytic experiments can be performed with the reactor. Two identical UV reactors have been built and are successfully used for photocatalytic water treatment experiments. The degradation of methylene blue with TiO2 as photocatalyst was studied to validate the UV reactor. Furthermore, photocatalytic and hybrid processes were conducted in the UV reactor to degrade a broad range of pharmaceutical micropollutants.

4.
Small ; : e2310427, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386289

RESUMO

The use of gas diffusion electrodes (GDEs) enables efficient electrochemical CO2 reduction and may be a viable technology in CO2 utilization after carbon capture. Understanding the spatio-temporal phenomena at the triple-phase boundary formed inside GDEs remains a challenge; yet it is critical to design and optimize industrial electrodes for gas-fed electrolyzers. Thus far, transport and reaction phenomena are not yet fully understood at the microscale, among other factors, due to a lack of experimental analysis methods for porous electrodes under operating conditions. In this work, a realistic microfluidic GDE surrogate is presented. Combined with fluorescence lifetime imaging microscopy (FLIM), the methodology allows monitoring of wetting and local pH, representing the dynamic (in)stability of the triple phase boundary in operando. Upon charging the electrode, immediate wetting leads to an initial flooding of the catalyst layer, followed by spatially oscillating pH changes. The micromodel presented gives an experimental insight into transport phenomena within porous electrodes, which is so far difficult to achieve. The methodology and proof of the spatio-temporal pH and wetting oscillations open new opportunities to further comprehend the relationship between gas diffusion electrode properties and electrical currents originating at a given surface potential.

5.
Adv Mater ; 36(4): e2306716, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37565596

RESUMO

Additive manufacturing techniques continue to improve in resolution, geometrical freedom, and production rates, expanding their application range in research and industry. Most established techniques, however, are based on layer-by-layer polymerization processes, leading to an inherent trade-off between resolution and printing speed. Volumetric 3D printing enables the polymerization of freely defined volumes allowing the fabrication of complex geometries at drastically increased production rates and high resolutions, marking the next chapter in light-based additive manufacturing. This work advances the volumetric 3D printing technique xolography to a continuous process. Dual-color photopolymerization is performed in a continuously flowing resin, inside a tailored flow cell. Supported by simulations, the flow profile in the printing area is flattened, and resin velocities at the flow cell walls are increased to minimize unwanted polymerization via laser sheet-induced curing. Various objects are printed continuously and true to shape with smooth surfaces. Parallel object printing paves the way for up-scaling the continuous production, currently reaching production rates up to 1.75 mm3 s-1 for the presented flow cell. Xolography in flow provides a new opportunity for scaling up volumetric 3D printing with the potential to resolve the trade-off between high production rates and high resolution in light-based additive manufacturing.

6.
Adv Healthc Mater ; : e2302957, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37988182

RESUMO

Microporous annealed particle (MAP) scaffolds are investigated for their application as injectable 3D constructs in the field of regenerative medicine and tissue repair. While available MAP scaffolds provide a stable interlinked matrix of microgels for cell culture, the infiltration depth and space for cells to grow inside the scaffolds is pre-determined by the void fraction during the assembly. In the case of MAP scaffolds fabricated from interlinked spherical microgels, a cellularity gradient can be observed with the highest cell density on the scaffold surface. Additionally, the interlinked microgel network limits the ability of cells to remodel their environment, which contradicts native tissue dynamics. In this work, a cell-induced interlinking method for MAP scaffold formation is established, which avoids the necessity of chemical crosslinkers and pre-engineered pores to achieve micro- or macropores in these 3D frameworks. This method enables cells to self-organize with microgels into dynamic tissue constructs, which can be further controlled by altering the microgel properties, the cell/microgel ratio, and well shape. To form a cell-induced interlinked scaffold, the cells are mixed with dextran-based microgels and function as a glue between the microgels, resulting in a more homogenous cell distribution throughout the scaffold with efficient cell-cell interactions.

7.
Membranes (Basel) ; 13(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37623802

RESUMO

In a single-step spinning process, we create a thin-walled, robust hollow fiber support made of Torlon® polyamide-imide featuring an intermediate polyethyleneimine (PEI) lumen layer to facilitate the integration and covalent attachment of a dense selective layer. Subsequently, interfacial polymerization of m-phenylenediamine and trimesoyl chloride forms a dense selective polyamide (PA) layer on the inside of the hollow fiber. The resulting thin-film composite hollow fiber membranes show high NaCl rejections of around 96% with a pure water permeability of 1.2 LMH/bar. The high success rate of fabricating the thin-film composite hollow fiber membrane proves our hypothesis of a supporting effect of the intermediate PEI layer on separation layer formation. This work marks a step towards the development of a robust method for the large-scale manufacturing of thin-film composite hollow fiber membranes for reverse osmosis and nanofiltration.

8.
ACS Biomater Sci Eng ; 9(8): 4878-4892, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37402206

RESUMO

In vitro environments that realize biomimetic scaffolds, cellular composition, physiological shear, and strain are integral to developing tissue models of organ-specific functions. In this study, an in vitro pulmonary alveolar capillary barrier model is developed that closely mimics physiological functions by combining a synthetic biofunctionalized nanofibrous membrane system with a novel three-dimensional (3D)-printed bioreactor. The fiber meshes are fabricated from a mixture of polycaprolactone (PCL), 6-armed star-shaped isocyanate-terminated poly(ethylene glycol) (sPEG-NCO), and Arg-Gly-Asp (RGD) peptides by a one-step electrospinning process that offers full control over the fiber surface chemistry. The tunable meshes are mounted within the bioreactor where they support the co-cultivation of pulmonary epithelial (NCI-H441) and endothelial (HPMEC) cell monolayers at air-liquid interface under controlled stimulation by fluid shear stress and cyclic distention. This stimulation, which closely mimics blood circulation and breathing motion, is observed to impact alveolar endothelial cytoskeleton arrangement and improve epithelial tight junction formation as well as surfactant protein B production compared to static models. The results highlight the potential of PCL-sPEG-NCO:RGD nanofibrous scaffolds in combination with a 3D-printed bioreactor system as a platform to reconstruct and enhance in vitro models to bear a close resemblance to in vivo tissues.


Assuntos
Pulmão , Alicerces Teciduais , Alicerces Teciduais/química , Peptídeos , Reatores Biológicos , Impressão Tridimensional
9.
Adv Healthc Mater ; 12(20): e2301055, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37434349

RESUMO

Neural interfaces are evolving at a rapid pace owing to advances in material science and fabrication, reduced cost of scalable complementary metal oxide semiconductor (CMOS) technologies, and highly interdisciplinary teams of researchers and engineers that span a large range from basic to applied and clinical sciences. This study outlines currently established technologies, defined as instruments and biological study systems that are routinely used in neuroscientific research. After identifying the shortcomings of current technologies, such as a lack of biocompatibility, topological optimization, low bandwidth, and lack of transparency, it maps out promising directions along which progress should be made to achieve the next generation of symbiotic and intelligent neural interfaces. Lastly, it proposes novel applications that can be achieved by these developments, ranging from the understanding and reproduction of synaptic learning to live-long multimodal measurements to monitor and treat various neuronal disorders.


Assuntos
Neurônios , Semicondutores
10.
J Hazard Mater ; 458: 131987, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421862

RESUMO

Electro-Fenton (EF) represents an eco-friendly and cost-effective advanced oxidation process that can remove highly persistent and hazardous pharmaceuticals, e.g., contrast media agents, from water bodies. However, up to date, EF modules incorporate a planar carbonaceous gas diffusion electrode (GDE) cathode containing fluorinated compounds as polymeric binders. Here, we introduce a novel flow-through module that deploys freestanding carbon microtubes (CMT) as microtubular GDEs, omitting any risks of secondary pollution by highly-persistent fluorinated compounds (e.g., Nafion). The flow-through module was characterized for electrochemical hydrogen peroxide (H2O2) generation and micropollutant removal via EF. H2O2 electro-generation experiments illustrated high production rates (1.1 ± 0.1-2.7 ± 0.1 mg cm-2 h-1) at an applied cathodic potential of - 0.6 V vs. SHE, depending on the porosity of CMTs. Diatrizoate (DTZ), as the model pollutant, with a high initial concentration of 100 mg L-1 was successfully oxidized (95-100 %), reaching mineralization (TOC-total organic carbon removal) efficiencies up to 69 %. Additionally, Electro-adsorption experiments demonstrated the capability of positively charged CMTs to remove negatively charged DTZ with a capacity of 11 mg g-1 from a 10 mg L-1 DTZ solution. These results reveal the potential of the as-designed module to serve as an oxidation unit coupled with other separation techniques, e.g., electro-adsorption or membrane processes.

11.
Adv Healthc Mater ; 12(20): e2301030, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37311209

RESUMO

Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.


Assuntos
Células-Tronco , Engenharia Tecidual , Humanos , Descoberta de Drogas , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/farmacologia
12.
Sci Total Environ ; 883: 163479, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37068671

RESUMO

Textile production is one of the main sources of freshwater consumption by industries worldwide. In addition, according to the world bank, 20 % of the wastewater generated globally is caused by textile wet-processing. Textile wet-processing includes the processes in textile production where garments are dyed or given the final functions like water-repellency. Several thousand chemicals were used in this process, some of which are highly toxic. Discharging untreated or insufficiently treated wastewater in water bodies results in high pollution levels, severely impacting the environment and human health. Especially in textile-producing countries like India, environmental pollution and water consumption from textile wet-processing have severe impacts. Next to the high volume of chemicals used in textile production, the high salt concentration in textile wastewater also poses a challenge and is critical for freshwater systems. Moreover, textile wastewater is one of the most difficult to treat wastewater. Currently, used treatment technologies do not meet the requirements to treat textile wastewater. Therefore, the further development of efficient treatment technologies for textile wastewater is critically important. Hence, in the interdisciplinary project, effect-based monitoring demonstrates the efficiency of electrically-driven water treatment processes to remove salts and micropollutants from process water (EfectroH2O), a low-energy Zero Liquid Discharge (ZLD) textile wastewater treatment technology is being developed consisting of a combination of capacitive deionization (CDI) and advanced oxidation processes (AOP). In addition to treatment technology development, methods for evaluating the efficiency of treatment technologies also need to be improved. Currently, mainly physicochemical parameters such as pH, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) are tested worldwide to check water quality. However, these methods are insufficient to make a statement about the toxic potential of such complex mixtures as textile wastewater. Therefore, also next to chemical analyses, effect-based methods (EBM) are used to verify the treated wastewater.

13.
ChemElectroChem ; 10(3): e202200928, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37082101

RESUMO

Complex geometries for electrodes are a great challenge in electrochemical applications. Slurry electrodes have been one example, which use complex flow distributors to improve the charge transfer between the current collector and the slurry particles. Here we use titanium-based flow distributors produced by indirect 3D-printing to improve further the electron transfer from highly conductive flow distributors to the slurry particles for a vanadium redox flow application. The titanium static mixers are directly coated with graphite to increase the activity for vanadium redox reactions. Increasing layers of graphite have shown an optimum for the positive and negative electrolytes. The application of heat treatment on the electrodes improves the anodic and cathodic current peaks drastically. Testing the highly conductive static mixers in a self-made redox flow cell results in 110 mA cm-2 discharge polarization.

14.
Biotechnol Bioeng ; 120(5): 1269-1287, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36705321

RESUMO

Bioreactors are the operative backbone, for example, for the production of biopharmaceuticals, biomaterials in tissue engineering, and sustainable substitutes for chemicals. Still, the Achilles' heel of bioreactors nowadays is the aeration which is based on intense stirring and gas sparging, yielding inherent drawbacks such as shear stress, foaming, and sterility concerns. We present the synergistic combination of simulations and experiments toward a membrane stirrer for the efficient bubble-free aeration of bioreactors. A digital twin of the bioreactor with an integrated membrane-module stirrer (MemStir) was developed with computational fluid dynamics (CFD) studies addressing the determination of fluid mixing, shear rates, and local oxygen concentration. Usability of the MemStir is shown in a foam-free recombinant production process of biosurfactants (rhamnolipids) from glucose with different strains of Pseudomonas putida KT2440 in a 3-L vessel and benchmarked against a regular aerated process. The MemStir delivered a maximal oxygen transfer rate (OTRmax ) of 175 mmol L-1 h-1 in completely foam-free cultivations. With a high space-time yield (STY) of 118 mgRL L-1 h-1 during a fed-batch fermentation, the effectiveness of the novel MemStir is demonstrated. Simulations show the generic value of the MemStir beyond biosurfactant production, for example, for animal cell cultivation.


Assuntos
Reatores Biológicos , Pseudomonas putida , Animais , Fermentação , Glucose , Oxigênio
15.
Membranes (Basel) ; 12(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295753

RESUMO

Selective, nanometer-thin organosilica layers created by plasma-enhanced chemical vapor deposition (PECVD) exhibit selective gas permeation behavior. Despite their promising pure gas performance, published data with regard to mixed gas behavior are still severely lacking. This study endeavors to close this gap by investigating the pure and mixed gas behavior depending on temperatures from 0 °C to 60 °C for four gases (helium, methane, carbon dioxide, and nitrogen) and water vapor. For the two permanent gases, helium and methane, the studied organosilica membrane shows a substantial increase in selectivity from αHe/CH4 = 9 at 0 °C to αHe/CH4 = 40 at 60 °C for pure as well as mixed gases with helium permeance of up to 300 GPU. In contrast, a condensable gas such as CO2 leads to a decrease in selectivity and an increase in permeance compared to its pure gas performance. When water vapor is present in the feed gas, the organosilica membrane shows even stronger deviations from pure gas behavior with a permeance loss of about 60 % accompanied by an increase in ideal selectivity αHe/CO2 from 8 to 13. All in all, the studied organosilica membrane shows very promising results for mixed gases. Especially for elevated temperatures, there is a high potential for separation by size exclusion.

16.
Small ; 18(49): e2204012, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36253147

RESUMO

Utilizing carbon dioxide (CO2 ) as a resource for carbon monoxide (CO) production using renewable energy requires electrochemical reactors with gas diffusion electrodes that maintain a stable and highly reactive gas/liquid/solid interface. Very little is known about the reasons why gas diffusion electrodes suffer from unstable long-term operation. Often, this is associated with flooding of the gas diffusion electrode (GDE) within a few hours of operation. A better understanding of parameters influencing the phase behavior at the electrolyte/electrode/gas interface is necessary to increase the durability of GDEs. In this work, a microfluidic structure with multi-scale porosity featuring heterogeneous surface wettability to realistically represent the behavior of conventional GDEs is presented. A gas/liquid/solid phase boundary was established within a conductive, highly porous structure comprising a silver catalyst and Nafion binder. Inoperando visualization of wetting phenomena was performed using confocal laser scanning microscopy (CLSM). Non-reversible wetting, wetting of hierarchically porous structures and electrowetting were observed and analyzed. Fluorescence lifetime imaging microscopy (FLIM) enabled the observation of reactions on the model electrode surface. The presented methodology enables the systematic evaluation of spatio-temporally evolving wetting phenomena as well as species characterization for novel catalyst materials under realistic GDE configurations and process parameters.

17.
MethodsX ; 9: 101814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046738

RESUMO

Electrokinetic flow phenomena are ubiquitous in electrical systems for desalination, chemical conversion, or mixing at a micro-scale. However, the important features of resulting 3D flow fields are only accessible through cost-intensive numerical simulations. Experimental 2D recording of the chaotic three-dimensional velocity fields developing for example at currents exceeding the limiting current density does not capture the complex 3D structures present in such flow fields. Additionally, numerical 3D studies are limited to dimensions three orders of magnitude smaller as found in real applications and only short run times due to the enormous computational effort. To apply the theoretical knowledge in real-world systems and create the possibility for detailed parameter studies, we present the first experimental method for recording and quantifying the time-resolved velocity field in an electrochemical microfluidic cell in 3D with dimensions found in industrial applications. We utilize this method in a co-submitted paper to record the 3D velocity field of electroconvection at a cation-exchange membrane.•Cell design suitable for simultaneous electrochemical experiments with optical 3D velocity quantification•Method optimized for velocity reconstruction of membrane-to-membrane distances found in industrial cells•Highly adaptable cell design, for optical characterization of electrochemical systems.

18.
Sci Rep ; 12(1): 7160, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504939

RESUMO

Membrane lungs consist of thousands of hollow fiber membranes packed together as a bundle. The devices often suffer from complications because of non-uniform flow through the membrane bundle, including regions of both excessively high flow and stagnant flow. Here, we present a proof-of-concept design for a membrane lung containing a membrane module based on triply periodic minimal surfaces (TPMS). By warping the original TPMS geometries, the local permeability within any region of the module could be raised or lowered, allowing for the tailoring of the blood flow distribution through the device. By creating an iterative optimization scheme for determining the distribution of streamwise permeability inside a computational porous domain, the desired form of a lattice of TPMS elements was determined via simulation. This desired form was translated into a computer-aided design (CAD) model for a prototype device. The device was then produced via additive manufacturing in order to test the novel design against an industry-standard predicate device. Flow distribution was verifiably homogenized and residence time reduced, promising a more efficient performance and increased resistance to thrombosis. This work shows the promising extent to which TPMS can serve as a new building block for exchange processes in medical devices.


Assuntos
Pulmão , Simulação por Computador , Membranas , Permeabilidade , Porosidade
19.
Small ; 18(15): e2107508, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246951

RESUMO

Today, millimeter-sized nonspherical any-shape particles serve as flexible, functional scaffold material in chemical and biochemical reactors tailoring their hydrodynamic properties and active surface-to-volume ratio based on the particle's shape. Decreasing the particle size to smaller than 100 µm would be desired as it increases the surface-to-volume ratio and promotes a particle assembly based on surface interactions, allowing the creation of tailored self-assembling 3D scaffolds. This study demonstrates a continuous high-throughput fabrication of microscopic 3D particles with complex shape and sub-micron resolution using continuous two-photon vertical flow lithography. Evolving from there, in-channel particle fabrication into a confined microfluidic chamber with a resting fluid enables the precise fabrication of a defined number of particles. 3D assemblies with various particle shapes are fabricated and analyzed regarding their permeability and morphology, representing convective accessibility of the assembly's porosity. Differently shaped particles highlight the importance of contact area regarding particle-particle interactions and the respective hydraulic resistance of an assembly. Finally, cell culture experiments show manifold cell-particle interactions promising applicability as bio-hybrid tissue. This study pushes the research boundaries of adaptive, responsive, and permeable 3D scaffolds and granular media by demonstrating a high throughput fabrication solution and a precise hydrodynamic analysis method for micro-particle assemblies.


Assuntos
Hidrodinâmica , Microfluídica , Tamanho da Partícula , Permeabilidade , Porosidade
20.
J Hazard Mater ; 429: 128291, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236034

RESUMO

Imperative decarbonization of water purification processes entails alternative regeneration methods for activated carbon. Regeneration based on changing dissociation equilibria, i.e. a major influencing factor on adsorption, usually requires the addition of acids/bases, but may also be triggered by temperature swing. Although adsorption and dissociation are both temperature-dependent phenomena, their conjunction has received little attention regarding trace organic compounds (TrOCs) and large temperature intervals, in particular above ΔT ≥ 50 ∘C. Therefore, we studied the adsorption equilibria of 16 TrOCs onto one granular activated carbon at temperatures ranging from 20 to 95 ∘C. The majority of compounds (12/16) exhibited an exothermic apparent adsorption enthalpy, while 3 out of 16 exhibited an endothermic apparent enthalpy. The range spanned from - 46 to + 50 kJ mol-1 (median at - 17 kJ mol-1). The possible origins of endothermic adsorption were discussed. A rationale of shifting pKa and thus changing dissociation of TrOCs was introduced and traded off against existing rationales, i.e. changing solute solubility, changing adsorption heat capacity, and saturation effects of the adsorbates. This knowledge may allow designing temperature swing adsorption processes that unlock the dissociation switch. The augmented process efficiency can thus provide the foundation for low-carbon emission, circular water purification processes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Soluções , Temperatura , Termodinâmica , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...