Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(8): 083112, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184618

RESUMO

We demonstrate an ion shuttling technique for high-resolution control of atom-ion collision energy by translating an ion held within a radio-frequency trap through a magneto-optical atom trap. The technique is demonstrated both experimentally and through numerical simulations, with the experimental results indicating control of ion kinetic energies from 0.05 to 1 K with a fractional resolution of ∼10 and the simulations demonstrating that kinetic energy control up to 120 K with a maximum predicted resolution of ∼100 is possible, offering order-of-magnitude improvements over most alternative techniques. Finally, we perform a proof-of-principle chemistry experiment using this technique and outline how the method may be refined in the future and applied to the study of molecular ion chemistry.

2.
Health Phys ; 112(1): 33-41, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906786

RESUMO

The use of high voltage (HV) electrodes in vacuum is commonplace in physics laboratories. In such systems, it has long been known that electron emission from an HV cathode can lead to bremsstrahlung x rays; indeed, this is the basic principle behind the operation of standard x-ray sources. However, in laboratory setups where x-ray production is not the goal and no electron source is deliberately introduced, field-emitted electrons accelerated by HV can produce x rays as an unintended hazardous byproduct. Both the level of hazard and the safe operating regimes for HV vacuum electrode systems are not widely appreciated, at least in university laboratories. A reinforced awareness of the radiation hazards associated with vacuum HV setups would be beneficial. The authors present a case study of a HV vacuum electrode device operated in a university atomic physics laboratory. They describe the characterization of the observed x-ray radiation, its relation to the observed leakage current in the device, the steps taken to contain and mitigate the radiation hazard, and suggested safety guidelines.


Assuntos
Eletrodos , Campos Eletromagnéticos , Modelos Teóricos , Doses de Radiação , Vácuo , Raios X , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Física/instrumentação , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...