Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(2): 495-505, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36602144

RESUMO

The combustion properties of a gasoline-like blend of pentene isomers were determined using multiple types of experimental measurements. The representative mixture (Mix A) is composed of 5.7% 1-pentene (1-C5H10), 39.4% 2-pentene (2-C5H10), 12.5% 2-methyl-1-butene (2M1B), and 42.4% 2-methyl-2-butene (2M2B) (% mol). Laminar flame speeds were measured at equivalence ratios of 0.7-1.5 in a constant-volume combustion chamber, and ignition delay times (including both OH* and CH* diagnostics) as well as CO time-history profiles were performed in shock tubes, in highly diluted mixtures (0.995 He/Ar), at a stoichiometric condition for temperatures ranging from 1350 to 1750 K, and at near-atmospheric pressure. Two additional unbalanced mixtures removing either 2M2B (Mix B) or 2-C5H10 (Mix C) were studied in a shock tube to collect CO time histories, representing the most stringent validation constraints, as these two pentenes constitute the biggest proportions in Mix A and exhibit opposite behaviors in terms of reactivity due to their chemical structure differences. Numerical predictions using a recent validated chemical kinetics mechanism encompassing all pentene isomers from Grégoire et al. ( Fuel2022, 323, 124223) are presented. The use of a complex blend of four pentene isomers in the present paper provided a capstone test of the current mechanism's ability to model pentene-isomer combustion chemistry, with very good results that reflect positively on the current state of the art in pentene isomer kinetics modeling.

2.
Phys Chem Chem Phys ; 20(16): 10588-10606, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29392270

RESUMO

The most important driving force for development of detailed chemical kinetic reaction mechanisms in combustion is the desire by researchers to simulate practical systems. This paper reviews the parallel evolution of kinetic reaction mechanisms and applications of those models to practical, real engines. Early, quite simple, kinetic models for small fuel molecules were extremely valuable in analyzing long-standing, poorly understood applied ignition and flame quenching problems, and later kinetic models have been applied to much more complex flame propagation, problems including autoignition in spark-ignition engines and issues related to octane numbers and knock in modern, high compression ratio and other engines. The recent emergence of very large, multi-fuel surrogate kinetic mechanisms that can address many different fuel types and real engine applications is discussed as a modern analytical tool that can be used for a wide variety of practical applications.

3.
J Phys Chem A ; 119(28): 7462-80, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25822578

RESUMO

Two experimental studies have been carried out on the oxidation of 2-methyl-2-butene, one measuring ignition delay times behind reflected shock waves in a stainless steel shock tube, and the other measuring fuel, intermediate, and product species mole fractions in a jet-stirred reactor (JSR). The shock tube ignition experiments were carried out at three different pressures, approximately 1.7, 11.2, and 31 atm, and at each pressure, fuel-lean (ϕ = 0.5), stoichiometric (ϕ = 1.0), and fuel-rich (ϕ = 2.0) mixtures were examined, with each fuel/oxygen mixture diluted in 99% Ar, for initial postshock temperatures between 1330 and 1730 K. The JSR experiments were performed at nearly atmospheric pressure (800 Torr), with stoichiometric fuel/oxygen mixtures with 0.01 mole fraction of 2M2B fuel, a residence time in the reactor of 1.5 s, and mole fractions of 36 different chemical species were measured over a temperature range from 600 to 1150 K. These JSR experiments represent the first such study reporting detailed species measurements for an unsaturated, branched hydrocarbon fuel larger than iso-butene. A detailed chemical kinetic reaction mechanism was developed to study the important reaction pathways in these experiments, with particular attention on the role played by allylic C-H bonds and allylic pentenyl radicals. The results show that, at high temperatures, this olefinic fuel reacts rapidly, similar to related alkane fuels, but the pronounced thermal stability of the allylic pentenyl species inhibits low temperature reactivity, so 2M2B does not produce "cool flames" or negative temperature coefficient behavior. The connections between olefin hydrocarbon fuels, resulting allylic fuel radicals, the resulting lack of low-temperature reactivity, and the gasoline engine concept of octane sensitivity are discussed.

4.
Annu Rev Phys Chem ; 64: 201-19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23298249

RESUMO

This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.


Assuntos
Biocombustíveis/análise , Ácidos Graxos/química , Plantas/química , 1-Butanol/química , Etanol/química , Gasolina/análise , Pentanóis/química , Petróleo/análise
5.
J Phys Chem A ; 116(51): 12406-21, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23206273

RESUMO

High-speed gas sampling experiments to measure the intermediate products formed during fuel decomposition remain challenging yet important experimental objectives. This article presents new speciation data on two important fuel reference compounds, n-heptane and n-butanol, at practical thermodynamic conditions of 700 K and 9 atm, for stoichiometric fuel-to-oxygen ratios and a dilution of 5.64 (molar ratio of inert gases to O(2)), and at two blend ratios, 80%-20% and 50%-50% by mole of n-heptane and n-butanol, respectively. When compared against 100% n-heptane ignition results, the experimental data show that n-butanol slows the reactivity of n-heptane. In addition, speciation results of n-butanol concentrations show that n-heptane causes n-butanol to react at temperatures where n-butanol in isolation would not be considered reactive. The chemical kinetic mechanism developed for this work accurately predicts the trends observed for species such as carbon monoxide, methane, propane, 1-butene, and others. However, the mechanism predicts a higher amount of n-heptane consumed at the first stage of ignition compared to the experimental data. Consequently, many of the species concentration predictions show a sharp rise at the first stage of ignition, a trend that is not observed experimentally. An important discovery is that the presence of n-butanol reduces the measured concentrations of the large linear alkenes, including heptenes, hexenes, and pentenes, showing that the addition of n-butanol affects the fundamental chemical pathways of n-heptane during ignition.


Assuntos
Butanóis/química , Heptanos/química , Biocombustíveis , Gases/química , Cinética , Modelos Químicos
6.
Phys Chem Chem Phys ; 13(15): 6901-13, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21409253

RESUMO

Measurements of the composition of reaction intermediates in low-pressure premixed flat flames of three simple esters, the methyl butanoate (MB), methyl isobutanoate (MIB), and ethyl propanoate (EP) isomers of C(5)H(10)O(2), enable further refinement and validation of a detailed chemical reaction mechanism originally developed in modeling studies of similar flames of methyl formate, methyl acetate, ethyl formate, and ethyl acetate. Photoionization mass spectrometry (PIMS), using monochromated synchrotron radiation, reveals significant differences in the compositions of key reaction intermediates between flames of the MB, MIB, and EP isomers studied under identical flame conditions. Detailed kinetic modeling describes how these differences are related to molecular structures of each of these isomers, leading to unique fuel destruction pathways. Despite the simple structures of these small esters, they contain structural functional groups expected to account for fuel-specific effects observed in the combustion of practical biodiesel fuels. The good agreement between experimental measurements and detailed reaction mechanisms applicable to these simple esters demonstrates that major features of each flame can be predicted with reasonable accuracy by building a hierarchical reaction mechanism based on three factors: (1) unimolecular decomposition of the fuel, especially by complex bond fission; (2) H-atom abstraction reactions followed by ß-scission of the resulting radicals, leading to nearly all of the intermediate species observed in each flame; (3) the rates of H-atom abstraction reactions for each alkoxy or alkyl group (i.e., methoxy, ethoxy, methyl, ethyl, propyl) are effectively the same as in other ester fuels with the same structural groups.

7.
Angew Chem Int Ed Engl ; 49(21): 3572-97, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20446278

RESUMO

Biofuels, such as bio-ethanol, bio-butanol, and biodiesel, are of increasing interest as alternatives to petroleum-based transportation fuels because they offer the long-term promise of fuel-source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel-delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next-generation alternative fuels.


Assuntos
Biocombustíveis , Etanol , Etanol/química , Oxigênio/química
8.
J Phys Chem A ; 111(19): 3761-75, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17388266

RESUMO

A detailed chemical kinetic mechanism has been developed and used to study the oxidation of cyclohexane at both low and high temperatures. Rules for reaction rate constants are developed for the low-temperature combustion of cyclohexane. These rules can be used for in chemical kinetic mechanisms for other cycloalkanes. Because cyclohexane produces only one type of cyclohexyl radical, much of the low-temperature chemistry of cyclohexane is described in terms of one potential energy diagram showing the reaction of cyclohexyl radical with O2 through five-, six-, and seven-membered-ring transition states. The direct elimination of cyclohexene and HO2 from RO2 is included in the treatment using a modified rate constant of Cavallotti et al. (Proc. Combust. Inst. 2007, 31, 201). Published and unpublished data from the Lille rapid compression machine, as well as jet-stirred reactor data, are used to validate the mechanism. The effect of heat loss is included in the simulations, an improvement on previous studies on cyclohexane. Calculations indicated that the production of 1,2-epoxycyclohexane observed in the experiments cannot be simulated according to the current understanding of low-temperature chemistry. Possible "alternative" H-atom isomerizations leading to different products from the parent O2QOOH radical were included in the low-temperature chemical kinetic mechanism and were found to play a significant role.

9.
J Phys Chem A ; 110(21): 6912-22, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16722706

RESUMO

A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by the addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in the molecular structure of the oxygenated species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA