Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295172

RESUMO

The nitriding of forging tools is an industrially established standard used to increase the hardness of the tool surface layer and reduce wear. However, this modification of the tool surface layer, as well as the microstructural changes that occur during this operation due to the thermo-mechanical load, cannot be considered during wear calculations with the widely used Archard wear model in the context of FE simulations. Based on previous work, this study further develops two tempering tests for the investigation of the hardness evolution of two nitride profiles based on H11 tool steel. Here, significant tempering effects could be observed depending on temperature, mechanical stress superposition and time. The results are used for setting up a new material model that is implemented in an existing numerical wear model. The validation is carried out in two laboratory forging test series. The evaluation shows that the hardness development in terms of tempering effects of a nitrided forging tool can be numerically predicted, especially for high forging cycles. However, due to the unexpected occurrence of adhesion effects, only limited applicability of the wear prediction then carried out is achieved.

2.
Materials (Basel) ; 14(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34683589

RESUMO

Friction drilling is a widely used process to produce bushings in sheet materials, which are processed further by thread forming to create a connection port. Previous studies focused on the process parameters and did not pay detailed attention to the material flow of the bushing. In order to describe the material behaviour during a friction drilling process realistically, a detailed material characterisation was carried out. Temperature, strain rate, and rolling direction dependent tensile tests were performed. The results were used to parametrise the Johnson-Cook hardening and failure model. With the material data, numerical models of the friction drilling were created using the finite element method in 3D as well as 2D, and the finite volume method in 3D. Furthermore, friction drilling tests were carried out and analysed. The experimental results were compared with the numerical findings to evaluate which modelling method could describe the friction drilling process best. Highest imaging quality to reality was shown by the finite volume method in comparison to the experiments regarding the material flow and the geometry of the bushing.

3.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064135

RESUMO

As a result of global economic and environmental change, the demand for innovative, environmentally-friendly technologies is increasing. Employing solid lubricants in rolling contacts can reduce the use of environmentally harmful greases and oils. The aim of the current research was the development of a solid lubricant system with regenerative properties. The layer system consisted of a molybdenum (Mo) reservoir and a top layer of molybdenum trioxide (MoO3). After surface wear, Mo is supposed to react with atmospheric oxygen and form a new oxide. The determination of the wear volume of thin layers cannot be measured microscopically, which is why the wear behavior is initially determined on the nano level. In this work, single Mo and MoO3 coatings prepared by physical vapor deposition (PVD) are characterized by nano testing. The main objective was to determine the wear volume of the single coatings using a newly developed method considering the initial topology. For this purpose, nano-wear tests with different wear paths and normal forces were carried out and measured by in situ scanning probe microscopy (SPM). Based on the characteristic values determined, the coefficient of wear was determined for wear modeling according to Sarkar. The validation of the wear model developed was carried out by further wear tests on the respective mono layers.

4.
Materials (Basel) ; 14(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383737

RESUMO

As one of the oldest shaping manufacturing processes, forging and especially hot forging is characterized by extreme loads on the tool. The thermal load in particular is able to cause constant changes in the hardness of the surface layer, which in turn has a decisive influence on the numerical estimation of wear. Thus, also during numerical wear, modeling hardness changes need to be taken into account. Within the scope of this paper, a new implementation of a numerical wear model is presented, which, in addition to dynamic hardness models for the base material, can also take into account the properties of a nitride wear protection layer as a function of the wear depth. After a functional representation, the new model is applied to the wear calculation of a multi-stage industrial hot forging process. The applicability of the new implementation is validated by the evaluation of the occurring hardness, wear depths and the locally associated removal of the wear protection layer. Consecutively, a tool life calculation module based on the calculated wear depth is implemented and demonstrated. In general, a good agreement of the results is achieved, making the model suitable for detailed 2D as well as large 3D Finite Element calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...