Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 10: 57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013971

RESUMO

Increased phosphorylation of the KIF5 anterograde motor is associated with impaired axonal transport and neurodegeneration, but paradoxically also with normal transport, though the details are not fully defined. JNK phosphorylates KIF5C on S176 in the motor domain; a site that we show is phosphorylated in brain. Microtubule pelleting assays demonstrate that phosphomimetic KIF5C(1-560)(S176D) associates weakly with microtubules compared to KIF5C(1-560)(WT). Consistent with this, 50% of KIF5C(1-560)(S176D) shows diffuse movement in neurons. However, the remaining 50% remains microtubule bound and displays decreased pausing and increased bidirectional movement. The same directionality switching is observed with KIF5C(1-560)(WT) in the presence of an active JNK chimera, MKK7-JNK. Yet, in cargo trafficking assays where peroxisome cargo is bound, KIF5C(1-560)(S176D)-GFP-FRB transports normally to microtubule plus ends. We also find that JNK increases the ATP hydrolysis of KIF5C in vitro. These data suggest that phosphorylation of KIF5C-S176 primes the motor to either disengage entirely from microtubule tracks as previously observed in response to stress, or to display improved efficiency. The final outcome may depend on cargo load and motor ensembles.

2.
Mol Cell Biol ; 32(17): 3513-26, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22751924

RESUMO

Cell migration is a fundamental biological function, critical during development and regeneration, whereas deregulated migration underlies neurological birth defects and cancer metastasis. MARCKS-like protein 1 (MARCKSL1) is widely expressed in nervous tissue, where, like Jun N-terminal protein kinase (JNK), it is required for neural tube formation, though the mechanism is unknown. Here we show that MARCKSL1 is directly phosphorylated by JNK on C-terminal residues (S120, T148, and T183). This phosphorylation enables MARCKSL1 to bundle and stabilize F-actin, increase filopodium numbers and dynamics, and retard migration in neurons. Conversely, when MARCKSL1 phosphorylation is inhibited, actin mobility increases and filopodium formation is compromised whereas lamellipodium formation is enhanced, as is cell migration. We find that MARCKSL1 mRNA is upregulated in a broad range of cancer types and that MARCKSL1 protein is strongly induced in primary prostate carcinomas. Gene knockdown in prostate cancer cells or in neurons reveals a critical role for MARCKSL1 in migration that is dependent on the phosphorylation state; phosphomimetic MARCKSL1 (MARCKSL1(S120D,T148D,T183D)) inhibits whereas dephospho-MARCKSL1(S120A,T148A,T183A) induces migration. In summary, these data show that JNK phosphorylation of MARCKSL1 regulates actin homeostasis, filopodium and lamellipodium formation, and neuronal migration under physiological conditions and that, when ectopically expressed in prostate cancer cells, MARCKSL1 again determines cell movement.


Assuntos
Actinas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Ligação a Calmodulina , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos , Mutação , Fosforilação , Neoplasias da Próstata/genética , Ratos , Ratos Sprague-Dawley , Proteínas de Transporte Vesicular/genética
3.
J Immunol ; 186(7): 4147-55, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21368224

RESUMO

The common lymphatic endothelial and vascular endothelial receptor (CLEVER-1; also known as FEEL-1 and stabilin-1) is a recycling and intracellular trafficking receptor with multifunctional properties. In this study, we demonstrate increased endothelial expression of CLEVER-1/stabilin-1 at sites of leukocyte recruitment to the inflamed human liver including sinusoids, septal vessels, and lymphoid follicles in inflammatory liver disease and tumor-associated vessels in hepatocellular carcinoma. We used primary cultures of human hepatic sinusoidal endothelial cells (HSEC) to demonstrate that CLEVER-1/stabilin-1 expression is enhanced by hepatocyte growth factor but not by classical proinflammatory cytokines. We then showed that CLEVER-1/stabilin-1 supports T cell transendothelial migration across HSEC under conditions of flow with strong preferential activity for CD4 FoxP3(+) regulatory T cells (Tregs). CLEVER-1/stabilin-1 inhibition reduced Treg transendothelial migration by 40% and when combined with blockade of ICAM-1 and vascular adhesion protein-1 (VAP-1) reduced it by >80%. Confocal microscopy demonstrated that 60% of transmigrating Tregs underwent transcellular migration through HSEC via ICAM-1- and VAP-1-rich transcellular pores in close association with CLEVER-1/stabilin-1. Thus, CLEVER-1/stabilin-1 and VAP-1 may provide an organ-specific signal for Treg recruitment to the inflamed liver and to hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/imunologia , Moléculas de Adesão Celular Neuronais/fisiologia , Quimiotaxia de Leucócito/imunologia , Endotélio Vascular/imunologia , Neoplasias Hepáticas/imunologia , Fígado/imunologia , Receptores de Retorno de Linfócitos/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/patologia , Células Cultivadas , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Fatores de Transcrição Forkhead/biossíntese , Humanos , Mediadores da Inflamação/fisiologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/imunologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/patologia , Linfócitos T Reguladores/metabolismo , Células Tumorais Cultivadas
4.
Nat Neurosci ; 14(3): 305-13, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21297631

RESUMO

Cell migration is the consequence of the sum of positive and negative regulatory mechanisms. Although appropriate migration of neurons is a principal feature of brain development, the negative regulatory mechanisms remain obscure. We found that JNK1 was highly active in developing cortex and that selective inhibition of JNK in the cytoplasm markedly increased both the frequency of exit from the multipolar stage and radial migration rate and ultimately led to an ill-defined cellular organization. Moreover, regulation of multipolar-stage exit and radial migration in Jnk1(-/-) (also known as Mapk8) mice, resulted from consequential changes in phosphorylation of the microtubule regulator SCG10 (also called stathmin-2). Expression of an SCG10 mutant that mimics the JNK1-phosphorylated form restored normal migration in the brains of Jnk1(-/-) mouse embryos. These findings indicate that the phosphorylation of SCG10 by JNK1 is a fundamental mechanism that governs the transition from the multipolar stage and the rate of neuronal cell movement during cortical development.


Assuntos
Movimento Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/fisiologia , Animais , Proteínas de Ligação ao Cálcio , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estatmina , Tubulina (Proteína)/metabolismo
5.
J Cell Sci ; 121(Pt 6): 854-64, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18303054

RESUMO

Loss-of-function mutations in the IKBKAP gene, which encodes IKAP (ELP1), cause familial dysautonomia (FD), with defective neuronal development and maintenance. Molecular mechanisms leading to FD are poorly understood. We demonstrate that various RNA-interference-based depletions of IKAP lead to defective adhesion and migration in several cell types, including rat primary neurons. The defects could be rescued by reintroduction of wild-type IKAP but not by FD-IKAP, a truncated form of IKAP constructed according to the mutation found in the majority of FD patients. Cytosolic IKAP co-purified with proteins involved in cell migration, including filamin A, which is also involved in neuronal migration. Immunostaining of IKAP and filamin A revealed a distinct co-localization of these two proteins in membrane ruffles. Depletion of IKAP resulted in a significant decrease in filamin A localization in membrane ruffles and defective actin cytoskeleton organization, which both could be rescued by the expression of wild-type IKAP but not by FD-IKAP. No downregulation in the protein levels of paxillin or beclin 1, which were recently described as specific transcriptional targets of IKAP, was detected. These results provide evidence for the role of the cytosolic interactions of IKAP in cell adhesion and migration, and support the notion that cell-motility deficiencies could contribute to FD.


Assuntos
Proteínas de Transporte/fisiologia , Movimento Celular , Extensões da Superfície Celular/química , Proteínas Contráteis/análise , Proteínas dos Microfilamentos/análise , Fibras de Estresse/ultraestrutura , Animais , Proteínas de Transporte/análise , Proteínas de Transporte/antagonistas & inibidores , Adesão Celular , Células Cultivadas , Cerebelo/citologia , Citosol/metabolismo , Filaminas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mutação , Neurônios/fisiologia , Paxilina/análise , Interferência de RNA , Proteínas de Ligação a RNA , Ratos , Fatores de Elongação da Transcrição , Vinculina/análise
6.
Expert Opin Ther Targets ; 12(1): 31-43, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18076368

RESUMO

BACKGROUND: Cell stress and tissue injury lead to c-Jun N-terminal kinase (JNK) activation, which is known to contribute to cell death. Paradoxically, strong evidence supports an important role for JNK in the regeneration of neuronal processes, subsequent to injury. OBJECTIVE: Recent research revealed the growth cone-associated protein superior cervical ganglion-10 protein as a candidate effector for the regeneration pathway mediated by JNK1. This implies that neuroprotective strategies targeting JNK may have negative effects on neuronal regeneration, unless JNK1 function is spared, and that the mechanistic relationships between JNK1 and neuronal regeneration deserve increased attention. RESULTS: This review proposes a model reconciling the microtubule regulatory properties of superior cervical ganglion protein 10 with its role as a JNK effector of regeneration and highlight remaining issues to be resolved.


Assuntos
Proteínas de Membrana/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Regeneração Nervosa/fisiologia , Gânglio Cervical Superior/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Proteínas de Membrana/genética , Microtúbulos/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/biossíntese , Proteína Quinase 8 Ativada por Mitógeno/genética , Estatmina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...