Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(1): 349-356, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38170921

RESUMO

In recent years, deep learning has made remarkable strides, surpassing human capabilities in tasks, such as strategy games, and it has found applications in complex domains, including protein folding. In the realm of quantum chemistry, machine learning methods have primarily served as predictive tools or design aids using generative models, while reinforcement learning remains in its early stages of exploration. This work introduces an actor-critic reinforcement learning framework suitable for diverse optimization tasks, such as searching for molecular structures with specific properties within conformational spaces. As an example, we show an implementation of this scheme for calculating minimum energy pathways of a Claisen rearrangement reaction and a number of SN2 reactions. The results show that the algorithm is able to accurately predict minimum energy pathways and, thus, transition states, providing the first steps in using actor-critic methods to study chemical reactions.

2.
J Comput Chem ; 45(7): 368-376, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909259

RESUMO

The concept of chemical bonding is a crucial aspect of chemistry that aids in understanding the complexity and reactivity of molecules and materials. However, the interpretation of chemical bonds can be hindered by the choice of the theoretical approach and the specific method utilized. This study aims to investigate the effect of choosing different density functionals on the interpretation of bonding achieved through energy decomposition analysis (EDA). To achieve this goal, a data set was created, representing four bonding groups and various combinations of functionals and dispersion correction schemes. The calculations showed significant variation among the different functionals for the EDA terms, with the dispersion correction terms exhibiting the highest variability. More information was extracted by using machine learning in combination with dimensionality reduction on the data set. Results indicate that, despite the differences in the EDA terms obtained from different functionals, the functional has the least significant impact, suggesting minimal influence on the bonding interpretation.

3.
J Phys Chem C Nanomater Interfaces ; 127(50): 24168-24182, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38148847

RESUMO

The reactive chemistry of molecular hydrogen at surfaces, notably dissociative sticking and hydrogen evolution, plays a crucial role in energy storage and fuel cells. Theoretical studies can help to decipher underlying mechanisms and reaction design, but studying dynamics at surfaces is computationally challenging due to the complex electronic structure at interfaces and the high sensitivity of dynamics to reaction barriers. In addition, ab initio molecular dynamics, based on density functional theory, is too computationally demanding to accurately predict reactive sticking or desorption probabilities, as it requires averaging over tens of thousands of initial conditions. High-dimensional machine learning-based interatomic potentials are starting to be more commonly used in gas-surface dynamics, yet robust approaches to generate reliable training data and assess how model uncertainty affects the prediction of dynamic observables are not well established. Here, we employ ensemble learning to adaptively generate training data while assessing model performance with full uncertainty quantification (UQ) for reaction probabilities of hydrogen scattering on different copper facets. We use this approach to investigate the performance of two message-passing neural networks, SchNet and PaiNN. Ensemble-based UQ and iterative refinement allow us to expose the shortcomings of the invariant pairwise-distance-based feature representation in the SchNet model for gas-surface dynamics.

4.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37681701

RESUMO

Quaternary III-V semiconductors are one of the most promising material classes in optoelectronics. The bandgap and its character, direct or indirect, are the most important fundamental properties determining the performance and characteristics of optoelectronic devices. Experimental approaches screening a large range of possible combinations of III- and V-elements with variations in composition and strain are impractical for every target application. We present a combination of accurate first-principles calculations and machine learning based approaches to predict the properties of the bandgap for quaternary III-V semiconductors. By learning bandgap magnitudes and their nature at density functional theory accuracy based solely on the composition and strain features of the materials as an input, we develop a computationally efficient yet highly accurate machine learning approach that can be applied to a large number of compositions and strain values. This allows for a computationally efficient prediction of a vast range of materials under different strains, offering the possibility of virtual screening of multinary III-V materials for optoelectronic applications.

5.
Nat Comput Sci ; 3(2): 139-148, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177626

RESUMO

The design of molecules and materials with tailored properties is challenging, as candidate molecules must satisfy multiple competing requirements that are often difficult to measure or compute. While molecular structures produced through generative deep learning will satisfy these patterns, they often only possess specific target properties by chance and not by design, which makes molecular discovery via this route inefficient. In this work, we predict molecules with (Pareto-)optimal properties by combining a generative deep learning model that predicts three-dimensional conformations of molecules with a supervised deep learning model that takes these as inputs and predicts their electronic structure. Optimization of (multiple) molecular properties is achieved by screening newly generated molecules for desirable electronic properties and reusing hit molecules to retrain the generative model with a bias. The approach is demonstrated to find optimal molecules for organic electronics applications. Our method is generally applicable and eliminates the need for quantum chemical calculations during predictions, making it suitable for high-throughput screening in materials and catalyst design.


Assuntos
Eletrônica , Ensaios de Triagem em Larga Escala
6.
Pharmaceutics ; 14(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432656

RESUMO

The main purpose of this study was to synthesize a new set of naphthoquinone-based ruthenium(II) arene complexes and to develop an understanding of their mode of action. This study systematically reviews the steps of synthesis, aiming to provide a simplified approach using microwave irradiation. The chemical structures and the physicochemical properties of this novel group of compounds were examined by 1H-NMR and 13C-NMR spectroscopy, X-ray diffractometry, HPLC-MS and supporting DFT calculations. Several aspects of the biological activity were investigated in vitro, including short- and long-term cytotoxicity tests, cellular accumulation studies, detection of reactive oxygen species generation, apoptosis induction and NAD(P)H:quinone oxidoreductase 1 (NQO1) activity as well as cell cycle analysis in A549, CH1/PA-1, and SW480 cancer cells. Furthermore, the DNA interaction ability was studied in a cell-free assay. A positive correlation was found between cytotoxicity, lipophilicity and cellular accumulation of the tested complexes, and the results offer some important insights into the effects of the arene. The most obvious finding to emerge from this study is that the usually very chemosensitive CH1/PA-1 teratocarcinoma cells showed resistance to these phthiocol-based organometallics in comparison to the usually less chemosensitive SW480 colon carcinoma cells, which pilot experiments suggest as being related to NQO1 activity.

7.
Digit Discov ; 1(4): 463-475, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36091414

RESUMO

The computational prediction of the structure and stability of hybrid organic-inorganic interfaces provides important insights into the measurable properties of electronic thin film devices, coatings, and catalyst surfaces and plays an important role in their rational design. However, the rich diversity of molecular configurations and the important role of long-range interactions in such systems make it difficult to use machine learning (ML) potentials to facilitate structure exploration that otherwise requires computationally expensive electronic structure calculations. We present an ML approach that enables fast, yet accurate, structure optimizations by combining two different types of deep neural networks trained on high-level electronic structure data. The first model is a short-ranged interatomic ML potential trained on local energies and forces, while the second is an ML model of effective atomic volumes derived from atoms-in-molecules partitioning. The latter can be used to connect short-range potentials to well-established density-dependent long-range dispersion correction methods. For two systems, specifically gold nanoclusters on diamond (110) surfaces and organic π-conjugated molecules on silver (111) surfaces, we train models on sparse structure relaxation data from density functional theory and show the ability of the models to deliver highly efficient structure optimizations and semi-quantitative energy predictions of adsorption structures.

8.
Nat Chem ; 14(8): 914-919, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35655007

RESUMO

Amino acids are among the building blocks of life, forming peptides and proteins, and have been carefully 'selected' to prevent harmful reactions caused by light. To prevent photodamage, molecules relax from electronic excited states to the ground state faster than the harmful reactions can occur; however, such photochemistry is not fully understood, in part because theoretical simulations of such systems are extremely expensive-with only smaller chromophores accessible. Here, we study the excited-state dynamics of tyrosine using a method based on deep neural networks that leverages the physics underlying quantum chemical data and combines different levels of theory. We reveal unconventional and dynamically controlled 'roaming' dynamics in excited tyrosine that are beyond chemical intuition and compete with other ultrafast deactivation mechanisms. Our findings suggest that the roaming atoms are radicals that can lead to photodamage, offering a new perspective on the photostability and photodamage of biological systems.


Assuntos
Aprendizado Profundo , Teoria Quântica , Aminoácidos , Fotoquímica , Tirosina
9.
J Chem Phys ; 156(17): 174801, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525649

RESUMO

Accurate and efficient methods to simulate nonadiabatic and quantum nuclear effects in high-dimensional and dissipative systems are crucial for the prediction of chemical dynamics in the condensed phase. To facilitate effective development, code sharing, and uptake of newly developed dynamics methods, it is important that software implementations can be easily accessed and built upon. Using the Julia programming language, we have developed the NQCDynamics.jl package, which provides a framework for established and emerging methods for performing semiclassical and mixed quantum-classical dynamics in the condensed phase. The code provides several interfaces to existing atomistic simulation frameworks, electronic structure codes, and machine learning representations. In addition to the existing methods, the package provides infrastructure for developing and deploying new dynamics methods, which we hope will benefit reproducibility and code sharing in the field of condensed phase quantum dynamics. Herein, we present our code design choices and the specific Julia programming features from which they benefit. We further demonstrate the capabilities of the package on two examples of chemical dynamics in the condensed phase: the population dynamics of the spin-boson model as described by a wide variety of semiclassical and mixed quantum-classical nonadiabatic methods and the reactive scattering of H2 on Ag(111) using the molecular dynamics with electronic friction method. Together, they exemplify the broad scope of the package to study effective model Hamiltonians and realistic atomistic systems.

10.
J Phys Chem Lett ; 13(17): 3812-3818, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35467875

RESUMO

Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have advanced the field of computational chemistry tremendously. However, they require the partitioning of a system into two different regions that are treated at different levels of theory, which can cause artifacts at the interface. Furthermore, they are still limited by high computational costs of quantum chemical calculations. In this work, we develop the buffer region neural network (BuRNN), an alternative approach to existing QM/MM schemes, which introduces a buffer region that experiences full electronic polarization by the inner QM region to minimize artifacts. The interactions between the QM and the buffer region are described by deep neural networks (NNs), which leads to the high computational efficiency of this hybrid NN/MM scheme while retaining quantum chemical accuracy. We demonstrate the BuRNN approach by performing NN/MM simulations of the hexa-aqua iron complex.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Redes Neurais de Computação
11.
Chem Sci ; 12(32): 10755-10764, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34447563

RESUMO

Modern functional materials consist of large molecular building blocks with significant chemical complexity which limits spectroscopic property prediction with accurate first-principles methods. Consequently, a targeted design of materials with tailored optoelectronic properties by high-throughput screening is bound to fail without efficient methods to predict molecular excited-state properties across chemical space. In this work, we present a deep neural network that predicts charged quasiparticle excitations for large and complex organic molecules with a rich elemental diversity and a size well out of reach of accurate many body perturbation theory calculations. The model exploits the fundamental underlying physics of molecular resonances as eigenvalues of a latent Hamiltonian matrix and is thus able to accurately describe multiple resonances simultaneously. The performance of this model is demonstrated for a range of organic molecules across chemical composition space and configuration space. We further showcase the model capabilities by predicting photoemission spectra at the level of the GW approximation for previously unseen conjugated molecules.

12.
J Chem Phys ; 154(23): 230903, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241249

RESUMO

Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle being published on how ML methods can represent and predict quantum mechanical properties-be they observable, such as molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure theory and molecular simulation, we provide an overview of how atomistic computational modeling is being transformed by the incorporation of ML approaches. From the perspective of the practitioner in the field, we assess how common workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we discuss how a tighter and lasting integration of ML methods with computational chemistry and materials science can be achieved and what it will mean for research practice, software development, and postgraduate training.

13.
Inorg Chem ; 60(13): 9805-9819, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34115482

RESUMO

A series of nine RuII arene complexes bearing tridentate naphthoquinone-based N,O,O-ligands was synthesized and characterized. Aqueous stability and their hydrolysis mechanism were investigated via UV/vis photometry, HPLC-MS, and density functional theory calculations. Substituents with a positive inductive effect improved their stability at physiological pH (7.4) intensely, whereas substituents such as halogens accelerated hydrolysis and formation of dimeric pyrazolate and hydroxido bridged dimers. The observed cytotoxic profile is unusual, as complexes exhibited much higher cytotoxicity in SW480 colon cancer cells than in the broadly chemo- (incl. platinum-) sensitive CH1/PA-1 teratocarcinoma cells. This activity pattern as well as reduced or slightly enhanced ROS generation and the lack of DNA interactions indicate a mode of action different from established or previously investigated classes of metallodrugs.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Naftoquinonas/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Naftoquinonas/química , Rutênio/química , Água/química
14.
Chem Rev ; 121(16): 9873-9926, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33211478

RESUMO

Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.

15.
J Phys Chem Lett ; 11(10): 3828-3834, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32311258

RESUMO

In recent years, deep learning has become a part of our everyday life and is revolutionizing quantum chemistry as well. In this work, we show how deep learning can be used to advance the research field of photochemistry by learning all important properties-multiple energies, forces, and different couplings-for photodynamics simulations. We simplify such simulations substantially by (i) a phase-free training skipping costly preprocessing of raw quantum chemistry data; (ii) rotationally covariant nonadiabatic couplings, which can either be trained or (iii) alternatively be approximated from only ML potentials, their gradients, and Hessians; and (iv) incorporating spin-orbit couplings. As the deep-learning method, we employ SchNet with its automatically determined representation of molecular structures and extend it for multiple electronic states. In combination with the molecular dynamics program SHARC, our approach termed SchNarc is tested on two polyatomic molecules and paves the way toward efficient photodynamics simulations of complex systems.

16.
Chem Sci ; 10(35): 8100-8107, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31857878

RESUMO

Photo-induced processes are fundamental in nature but accurate simulations of their dynamics are seriously limited by the cost of the underlying quantum chemical calculations, hampering their application for long time scales. Here we introduce a method based on machine learning to overcome this bottleneck and enable accurate photodynamics on nanosecond time scales, which are otherwise out of reach with contemporary approaches. Instead of expensive quantum chemistry during molecular dynamics simulations, we use deep neural networks to learn the relationship between a molecular geometry and its high-dimensional electronic properties. As an example, the time evolution of the methylenimmonium cation for one nanosecond is used to demonstrate that machine learning algorithms can outperform standard excited-state molecular dynamics approaches in their computational efficiency while delivering the same accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...