Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 123(32): 6886-6896, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31322887

RESUMO

Photodissociation of vibrationally and electronically excited sulfur dimer molecules (S2) has been studied in a combined experimental and computational quantum chemistry study in order to characterize bound-continuum transitions. Ab initio quantum chemistry calculations are carried out to predict the potential energy curves, spin-orbit coupling, transition moments, and bound-continuum spectra of S2 for comparison with the experimental data. The experiment uses velocity map imaging to measure S-atom production following S2 photoexcitation in the ultraviolet region (320-205 nm). A pulsed electric discharge in H2S produces ground-state S2 X3Σg-(v = 0-15) as well as electronically excited singlet sulfur and b1Σg+(v = 0, 1), and evidence is presented for the production and photodissociation of S2 a1Δg. In a previous paper, we reported threshold photodissociation of S2X3Σg-(v = 0) in the 282-266 nm region. In the present study, S(3PJ) fine structure branching and angular distributions for photodissociation of S2 (X3Σg-(v = 0), a1Δg and b1Σg+) via the B″3Πu, B3Σu- and 11Πu excited states are reported. In addition, photodissociation of the X3Σg-(v = 0) state of S2 to the second dissociation limit producing S(3P2) + S(1D) is characterized. The present results on S2 photodynamics are compared to those of the well-studied electronically isovalent O2 molecule.

2.
J Phys Chem A ; 119(28): 7668-82, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25992467

RESUMO

Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300-900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988 , 92 , 2455 - 2462 ). These corrections necessitated the development of a detailed model of the B̃(2)A1' (3s)-X̃(2)A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k∞(T); it was used to fit the experimental rate coefficients using the Levenberg-Marquardt algorithm to minimize χ(2) calculated from the differences between experimental and calculated rate coefficients. Parameters for both k∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300-2000 K. A high pressure limit of k∞(T) = 5.76 × 10(-11)(T/298 K)(-0.34) cm(3) molecule(-1) s(-1) was obtained, which agrees well with the best available theoretical expression.

3.
Phys Chem Chem Phys ; 12(42): 13983-91, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20859586

RESUMO

Rotational analysis of the (2 + 1) resonance enhanced multiphoton ionization (REMPI) spectrum of the C(1)B(1) Rydberg state of the water isotopomers H(2)O, HOD and D(2)O is reported. Spectroscopic parameters for the v = 0 vibrational level of the C(1)B(1) state of the mixed isotopomer HOD are derived and its spectra are accurately simulated for the first time using the PGOPHER program. Simulation of two photon spectra of the C(1)B(1)-X(1)A(1) transition of HOD requires two transition moments, and the ratio of these is determined and explained by a simple geometrical model. Optimal transitions for state-selective detection of low energy rotational states are identified for all three molecules. Analysis of the linewidths in the present work, combined with previous work [H. H. Kuge and K. Kleinermanns, J. Chem. Phys., 1989, 90, 46-52; K. J. Yuan et al., Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 19148-19153; M. N. R. Ashfold et al., Chem. Phys., 1984, 84, 35-50; G. Meijer et al., J. Chem. Phys., 1986, 85, 6914-6922.], suggests that while a simple ⟨J(a)'(2)〉-dependent model for heterogeneous predissociation of the C(1)B(1) Rydberg state accounts for much of the quantum number dependence, it is not sufficient for describing the predissociation in any of the three isotopomers. The component of the linewidth due to the homogeneous predissociation attributed to predissociation of the C(1)B(1) by the Ã(1)B(1) state was found to be significantly narrower than in previous work, indicating a longer lifetime of the C(1)B(1) Rydberg state. The current work provides the basis for on-going studies of rotational energy transfer in the mixed isotopomers of water using the velocity map imaging technique.


Assuntos
Óxido de Deutério/química , Fótons , Rotação , Análise Espectral , Elétrons , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...