Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 391: 117474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428286

RESUMO

BACKGROUND AND AIMS: High plasma lipoprotein (a) [Lp(a)] levels are associated with increased atherosclerotic cardiovascular disease (ASCVD), in part attributed to elevated inflammation. High plasma Lp(a) levels inversely correlate with apolipoprotein (a) [(APO(a)] isoform size. APO(a) isoform size is negatively associated with APO(a) production rate (PR) and positively associated with APO(a) fractional catabolic rate (FCR). We asked whether APO(a) PR and FCR (kinetics) are associated with plasma levels of interleukin (IL)-6 and IL-18, pro-inflammatory interleukins that promote ASCVD. METHODS: We used samples from existing data of APO(a) kinetic studies from an ethnically diverse cohort (n = 25: 10 Black, 9 Hispanic, and 6 White subjects) and assessed IL-6 and IL-18 plasma levels. We performed multivariate linear regression analyses to examine the relationships between predictors APO(a) PR or APO(a) FCR, and outcome variables IL-6 or IL-18. In these analyses, we adjusted for parameters known to affect Lp(a) levels and APO(a) PR and FCR, including race/ethnicity and APO(a) isoform size. RESULTS: APO(a) PR and FCR were positively associated with plasma IL-6, independent of isoform size, and dependent on race/ethnicity. APO(a) PR was positively associated with plasma IL-18, independent of isoform size and race/ethnicity. APO(a) FCR was not associated with plasma IL-18. CONCLUSIONS: Our studies demonstrate a relationship between APO(a) PR and FCR and plasma IL-6 or IL-18, interleukins that promote ASCVD. These studies provide new insights into Lp(a) pro-inflammatory properties and are especially relevant in view of therapies targeting APO(a) to decrease cardiovascular risk.


Assuntos
Aterosclerose , Interleucina-6 , Humanos , Apoproteína(a) , Etnicidade , Interleucina-18 , Cinética , Apolipoproteínas A , Lipoproteína(a) , Isoformas de Proteínas/metabolismo
2.
J Lipid Res ; 65(4): 100534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522750

RESUMO

The deposition of cholesterol-rich lipoproteins in the arterial wall triggers macrophage inflammatory responses, which promote atherosclerosis. The NLRP3 inflammasome aggravates atherosclerosis; however, cellular mechanisms connecting macrophage cholesterol accumulation to inflammasome activation are poorly understood. We investigated the mechanisms of NLRP3 inflammasome activation in cholesterol-loaded macrophages and in atherosclerosis-prone Ldlr-/- mice with defects in macrophage cholesterol efflux. We found that accumulation of cholesterol in macrophages treated with modified LDL or cholesterol crystals, or in macrophages defective in the cholesterol efflux promoting transporters ABCA1 and ABCG1, leads to activation of NLRP3 inflammasomes as a result of increased cholesterol trafficking from the plasma membrane to the ER, via Aster-B. In turn, the accumulation of cholesterol in the ER activates the inositol triphosphate-3 receptor, CaMKII/JNK, and induces NLRP3 deubiquitylation by BRCC3. An NLRP3 deubiquitylation inhibitor or deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex, suppressed inflammasome activation, neutrophil extracellular trap formation (NETosis), and atherosclerosis in vivo. These results identify a link between the trafficking of cholesterol to the ER, NLRP3 deubiquitylation, inflammasome activation, and atherosclerosis.


Assuntos
Aterosclerose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Colesterol , Retículo Endoplasmático , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Colesterol/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Retículo Endoplasmático/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Transporte Biológico , Camundongos Knockout
3.
EJNMMI Res ; 13(1): 106, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079017

RESUMO

BACKGROUND: The apolipoprotein E-deficient (apoE-/-) mouse is a well-established model for studying atherosclerosis. However, its small size limits its use in longitudinal positron emission tomography (PET) imaging studies. Recently, the apoE-/- rat has emerged as an alternative. With this study, we investigate the feasibility of using apoE-/- rats as an in vivo model for longitudinal atherosclerotic PET/CT imaging. RESULTS: ApoE-/- rats showed significantly higher [18F]FDG uptake than controls in the aortic arch (+ 18.5%, p < 0.001) and abdominal aorta (+ 31.0%, p < 0.001) at weeks 12, 26, and 51. ApoE-/- rats exhibited hypercholesterolemia, as evidenced by plasma cholesterol levels that were up to tenfold higher, and total hepatic cholesterol levels that were up to threefold higher than the control rats at the end of the study. Fast protein liquid chromatography cholesterol profiling indicated very high levels of pro-atherogenic apoB-containing very low-density lipoprotein and low-density lipoprotein fractions in the apoE-/- rats. Atherosclerotic lesions cover 19.9% of the surface of the aortic arch (p = 0.0013), and there was a significantly higher subendothelial accumulation of ED1-positive macrophages in the abdominal aorta of the apoE-/- rats compared to control rats (Ctrl) (p = 0.01). No differences in neutral sterols were observed but higher levels of bile acids were found in the apoE-/- rats. CONCLUSION: These data demonstrate early signs of hypercholesterolemia, high levels of bile acids, the development of atherosclerotic lesions, and macrophage accumulation in apoE-/- rats. Therefore, this model shows promise for atherosclerosis imaging studies.

5.
Circulation ; 148(22): 1764-1777, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37781816

RESUMO

BACKGROUND: Clonal hematopoiesis (CH) has emerged as an independent risk factor for atherosclerotic cardiovascular disease, with activation of macrophage inflammasomes as a potential underlying mechanism. The NLRP3 (NLR family pyrin domain containing 3) inflammasome has a key role in promoting atherosclerosis in mouse models of Tet2 CH, whereas inhibition of the inflammasome product interleukin-1ß appeared to particularly benefit patients with TET2 CH in CANTOS (Cardiovascular Risk Reduction Study [Reduction in Recurrent Major CV Disease Events]). TET2 is an epigenetic modifier that decreases promoter methylation. However, the mechanisms underlying macrophage NLRP3 inflammasome activation in TET2 (Tet methylcytosine dioxygenase 2) deficiency and potential links with epigenetic modifications are poorly understood. METHODS: We used cholesterol-loaded TET2-deficient murine and embryonic stem cell-derived isogenic human macrophages to evaluate mechanisms of NLRP3 inflammasome activation in vitro and hypercholesterolemic Ldlr-/- mice modeling TET2 CH to assess the role of NLRP3 inflammasome activation in atherosclerosis. RESULTS: Tet2 deficiency in murine macrophages acted synergistically with cholesterol loading in cell culture and with hypercholesterolemia in vivo to increase JNK1 (c-Jun N-terminal kinase 1) phosphorylation and NLRP3 inflammasome activation. The mechanism of JNK (c-Jun N-terminal kinase) activation in TET2 deficiency was increased promoter methylation and decreased expression of the JNK-inactivating dual-specificity phosphatase Dusp10. Active Tet1-deadCas9-targeted editing of Dusp10 promoter methylation abolished cholesterol-induced inflammasome activation in Tet2-deficient macrophages. Increased JNK1 signaling led to NLRP3 deubiquitylation and activation by the deubiquitinase BRCC3 (BRCA1/BRCA2-containing complex subunit 3). Accelerated atherosclerosis and neutrophil extracellular trap formation (NETosis) in Tet2 CH mice were reversed by holomycin, a BRCC3 deubiquitinase inhibitor, and also by hematopoietic deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex. Human TET2-/- macrophages displayed increased JNK1 and NLRP3 inflammasome activation, especially after cholesterol loading, with reversal by holomycin treatment, indicating human relevance. CONCLUSIONS: Hypercholesterolemia and TET2 deficiency converge on a common pathway of NLRP3 inflammasome activation mediated by JNK1 activation and BRCC3-mediated NLRP3 deubiquitylation, with potential therapeutic implications for the prevention of cardiovascular disease in TET2 CH.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Dioxigenases , Hipercolesterolemia , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Colesterol/metabolismo , Hematopoiese Clonal , Enzimas Desubiquitinantes , Proteínas de Ligação a DNA/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
6.
Curr Atheroscler Rep ; 25(9): 527-534, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395922

RESUMO

PURPOSE OF REVIEW: The majority of leukocytes in advanced human atherosclerotic plaques are T-cells. T-cell subsets exert pro- or anti-atherogenic effects largely via the cytokines they secrete. Tregulatory cells (Tregs) are anti-inflammatory, but may lose these properties during atherosclerosis, proposed to be downstream of cholesterol accumulation. Aged T-cells also accumulate cholesterol. The effects of T-cell cholesterol accumulation on T-cell fate and atherosclerosis are not uniform. RECENT FINDINGS: T-cell cholesterol accumulation enhances differentiation into pro-atherogenic cytotoxic T-cells and boosts their killing capacity, depending on the localization and extent of cholesterol accumulation. Excessive cholesterol accumulation induces T-cell exhaustion or T-cell apoptosis, the latter decreasing atherosclerosis but impairing T-cell functionality in terms of killing capacity and proliferation. This may explain the compromised T-cell functionality in aged T-cells and T-cells from CVD patients. The extent of T-cell cholesterol accumulation and its cellular localization determine T-cell fate and downstream effects on atherosclerosis and T-cell functionality.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Idoso , Colesterol , Linfócitos T , Envelhecimento
7.
Cell Stem Cell ; 30(6): 800-817.e9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267915

RESUMO

Cholesterol efflux pathways could be exploited in tumor biology to unravel cancer vulnerabilities. A mouse model of lung-tumor-bearing KRASG12D mutation with specific disruption of cholesterol efflux pathways in epithelial progenitor cells promoted tumor growth. Defective cholesterol efflux in epithelial progenitor cells governed their transcriptional landscape to support their expansion and create a pro-tolerogenic tumor microenvironment (TME). Overexpression of the apolipoprotein A-I, to raise HDL levels, protected these mice from tumor development and dire pathologic consequences. Mechanistically, HDL blunted a positive feedback loop between growth factor signaling pathways and cholesterol efflux pathways that cancer cells hijack to expand. Cholesterol removal therapy with cyclodextrin reduced tumor burden in progressing tumor by suppressing the proliferation and expansion of epithelial progenitor cells of tumor origin. Local and systemic perturbations of cholesterol efflux pathways were confirmed in human lung adenocarcinoma (LUAD). Our results position cholesterol removal therapy as a putative metabolic target in lung cancer progenitor cells.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Colesterol/metabolismo , Neoplasias Pulmonares/genética , Proliferação de Células , Pulmão , Células-Tronco/metabolismo , Apolipoproteína A-I/metabolismo , Microambiente Tumoral
9.
Obesity (Silver Spring) ; 31(3): 744-756, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36782388

RESUMO

OBJECTIVE: The aim of this study was an assessment of post hoc associations among circadian rhythm parameters, physical activity (PA), and cardiometabolic risk factors in adults with obesity and prediabetes after 3 years of weight loss maintenance. METHODS: Circadian rhythm parameters (continuous wrist-temperature measurements), PA, systolic and diastolic blood pressure (SBP, DBP), heart rate (HR), plasma high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, remnant cholesterol, triacylglycerol, and C-reactive protein (CRP) concentrations were determined in 91 free-living participants (mean [SD], age = 56.6 [10] years; BMI = 28.2 [4.0]; homeostatic model assessment of insulin resistance [HOMA-IR] = 3.2 [3.1]) and in 38 participants in sedentary respiration chamber conditions (age = 56.6 [10] years; BMI = 28.5 [4.0]; HOMA-IR = 3.3 [1.4]). Associations of circadian rhythm parameters and PA with cardiometabolic risk factors were determined using factor analyses followed by Pearson correlations. RESULTS: Values of cardiometabolic risk factors were similar, whereas circadian rhythm parameters and PA differed significantly (p < 0.05) between conditions. In both conditions, parameters indicating a robust circadian rhythm associated inversely with CRP and positively with plasma HDL-C concentrations. In free-living conditions, PA associated inversely with SBP and HR and positively with HDL-C and robust circadian rhythm parameters. In sedentary conditions, PA associated positively with HR and inversely with robust circadian rhythm parameters. PA mediated the inverse association of parameters indicating a robust circadian rhythm with SBP in free-living conditions. CONCLUSIONS: In adults with obesity and prediabetes, parameters indicating a robust circadian rhythm were, independently of PA, associated with lower cardiometabolic risk and CRP. Only in free-living conditions, PA mediated the association of higher circadian stability with lower SBP.


Assuntos
Doenças Cardiovasculares , Estado Pré-Diabético , Adulto , Humanos , Pessoa de Meia-Idade , Fatores de Risco Cardiometabólico , Obesidade , Exercício Físico , Colesterol , Pressão Sanguínea , Estilo de Vida , Fatores de Risco , Índice de Massa Corporal
10.
Cardiovasc Res ; 119(4): 969-981, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36537208

RESUMO

AIMS: Neutrophil extracellular trap formation (NETosis) increases atherosclerotic plaque vulnerability and athero-thrombosis. However, mechanisms promoting NETosis during atherogenesis are poorly understood. We have shown that cholesterol accumulation due to myeloid cell deficiency of the cholesterol transporters ATP Binding Cassette A1 and G1 (ABCA1/G1) promotes NLRP3 inflammasome activation in macrophages and neutrophils and induces prominent NETosis in atherosclerotic plaques. We investigated whether NETosis is a cell-intrinsic effect in neutrophils or is mediated indirectly by cellular crosstalk from macrophages to neutrophils involving IL-1ß. METHODS AND RESULTS: We generated mice with neutrophil or macrophage-specific Abca1/g1 deficiency (S100A8CreAbca1fl/flAbcg1fl/fl or CX3CR1CreAbca1fl/flAbcg1fl/fl mice, respectively), and transplanted their bone marrow into low-density lipoprotein receptor knockout mice. We then fed the mice a cholesterol-rich diet. Macrophage, but not neutrophil Abca1/g1 deficiency activated inflammasomes in macrophages and neutrophils, reflected by caspase-1 cleavage, and induced NETosis in plaques. NETosis was suppressed by administering an interleukin (IL)-1ß neutralizing antibody. The extent of NETosis in plaques correlated strongly with the degree of neutrophil accumulation, irrespective of blood neutrophil counts, and neutrophil accumulation was decreased by IL-1ß antagonism. In vitro, IL-1ß or media transferred from Abca1/g1-deficient macrophages increased NETosis in both control and Abca1/Abcg1 deficient neutrophils. This cell-extrinsic effect of IL-1ß on NETosis was blocked by an NLRP3 inhibitor. CONCLUSION: These studies establish a new link between inflammasome-mediated IL-1ß production in macrophages and NETosis in atherosclerotic plaques. Macrophage-derived IL-1ß appears to increase NETosis both by increasing neutrophil recruitment to plaques and by promoting neutrophil NLRP3 inflammasome activation.


Assuntos
Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Camundongos Knockout
11.
Mol Genet Metab Rep ; 31: 100872, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782606

RESUMO

Glycogen storage disease type 1a (GSD Ia) is an inborn error of carbohydrate metabolism. Despite severe hyperlipidemia, GSD Ia patients show limited atherogenesis compared to age-and-gender matched controls. Employing a GSD Ia mouse model that resembles the severe hyperlipidemia in patients, we here found increased atherogenesis in GSD Ia. These data provide a rationale for investigating atherogenesis in GSD Ia in a larger patient cohort.

12.
Pulm Circ ; 12(3): e12101, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35833096

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased pulmonary arterial pressure, inflammation, and neointimal remodeling of pulmonary arterioles. Serum levels of interleukin (IL)-1ß and IL-18 are elevated in PAH patients and may enhance proinflammatory neointimal remodeling. NLRP3 inflammasome activation induces cleavage of the cytokines IL-1ß and IL-18, required for their secretion. Pirfenidone (PFD), an antifibrotic and anti-inflammatory drug, has been suggested to inhibit NLRP3 inflammasome activation. We hypothesized that PFD delays the progression of PAH by suppressing NLRP3 inflammasome activation. We assessed the effects of PFD treatment in a rat model for neointimal PAH induced by monocrotaline and aortocaval shunt using echocardiographic, hemodynamic, and vascular remodeling parameters. We measured inflammasome activation by NLRP3 immunostaining, Western blots for caspase-1, IL-1ß, and IL-18 cleavage, and macrophage IL-1ß secretion. PFD treatment ameliorated pulmonary arterial pressure, pulmonary vascular resistance, and pulmonary vascular remodeling in PAH rats. In PAH rats, immunostaining of NLRP3 in pulmonary arterioles and caspase-1, IL-1ß, and IL-18 cleavage in lung homogenates were increased compared to controls, reflecting NLRP3 inflammasome activation in vivo. PFD decreased IL-1ß and IL-18 cleavage, as well as macrophage IL-1ß secretion in vitro. Our studies show that PFD ameliorates pulmonary hemodynamics and vascular remodeling in experimental PAH. Although PFD did not affect all NLRP3 inflammasome parameters, it decreased IL-1ß and IL-18 cleavage, the products of NLRP3 inflammasome activation that are key to its downstream effects. Our findings thus suggest a therapeutic benefit of PFD in PAH via suppression of NLRP3 inflammasome activation.

13.
Nat Commun ; 13(1): 3799, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778407

RESUMO

Atherosclerosis is a chronic inflammatory disease driven by hypercholesterolemia. During aging, T cells accumulate cholesterol, potentially affecting inflammation. However, the effect of cholesterol efflux pathways mediated by ATP-binding cassette A1 and G1 (ABCA1/ABCG1) on T cell-dependent age-related inflammation and atherosclerosis remains poorly understood. In this study, we generate mice with T cell-specific Abca1/Abcg1-deficiency on the low-density-lipoprotein-receptor deficient (Ldlr-/-) background. T cell Abca1/Abcg1-deficiency decreases blood, lymph node, and splenic T cells, and increases T cell activation and apoptosis. T cell Abca1/Abcg1-deficiency induces a premature T cell aging phenotype in middle-aged (12-13 months) Ldlr-/- mice, reflected by upregulation of senescence markers. Despite T cell senescence and enhanced T cell activation, T cell Abca1/Abcg1-deficiency decreases atherosclerosis and aortic inflammation in middle-aged Ldlr-/- mice, accompanied by decreased T cells in atherosclerotic plaques. We attribute these effects to T cell apoptosis downstream of T cell activation, compromising T cell functionality. Collectively, we show that T cell cholesterol efflux pathways suppress T cell apoptosis and senescence, and induce atherosclerosis in middle-aged Ldlr-/- mice.


Assuntos
Aterosclerose , Linfócitos T , Animais , Apoptose , Aterosclerose/genética , Transporte Biológico , Síndromes de Imunodeficiência , Inflamação , Camundongos , Timo/anormalidades
14.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104242

RESUMO

Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway.


Assuntos
Apolipoproteínas M , Fatores de Transcrição Forkhead , Insulina , Fígado/metabolismo , Lisofosfolipídeos , Esfingosina , Animais , Apolipoproteínas M/genética , Apolipoproteínas M/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Lipoproteínas HDL/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Esfingosina/análogos & derivados , Esfingosina/metabolismo
15.
Atherosclerosis ; 343: 20-27, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35091264

RESUMO

BACKGROUND AND AIMS: Leukocytosis, the expansion of white blood cells, is associated with increased cardiovascular risk. Studies in animal models have shown that high-density lipoprotein cholesterol (HDL-c) suppresses leukocytosis by mediating cholesterol efflux from hematopoietic stem and progenitor cells. HDL-c showed a moderate negative association with leukocyte numbers in the UK Biobank and Multi-Ethnic Study of Atherosclerosis. Cholesterol efflux capacity of HDL (HDL-CEC) or HDL particle (HDL-P) number has been proposed as improved inverse predictor of CVD compared to plasma HDL-c. In the LifeLines DEEP (LLD) cohort (n = 962), a sub-cohort representing the prospective population-based LL cohort from the North of The Netherlands, we tested the hypothesis that HDL-CEC and HDL-P were associated with lower leukocyte counts. METHODS: We carried out multivariable regression and causal mediation analyses (CMA) to test associations between HDL-c, HDL-CEC, or HDL-P and leukocyte counts. We measured HDL-CEC in THP-1 macrophages and HDL-P and composition using nuclear magnetic resonance. RESULTS: HDL-c associated negatively with leukocyte counts, as did extra-large and large HDL-P, while HDL-CEC showed no association. Each one-standard deviation (SD) increase in extra-large HDL-P was associated with 3.0% and 4.8% lower leukocytes and neutrophils, respectively (q < 0.001). In contrast, plasma concentration of small HDL-P associated positively with leukocyte and neutrophil counts, as did small HDL-P triglycerides (TG) and total plasma TG. CMA showed that the association between S-HDL-P and leukocytes was mediated by S-HDL-TG. CONCLUSIONS: The association between HDL-P and leukocyte counts in the general population is dependent on HDL-P size and composition, but not HDL-CEC.


Assuntos
Aterosclerose , Animais , HDL-Colesterol , Estudos Transversais , Humanos , Contagem de Leucócitos , Estudos Prospectivos
16.
J Lipid Res ; 63(2): 100167, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007562

RESUMO

Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.


Assuntos
Mobilização de Células-Tronco Hematopoéticas
17.
Front Immunol ; 12: 716357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489968

RESUMO

Lifestyle- and genetically induced disorders related to disturbances in cholesterol metabolism have shown the detrimental impact of excessive cholesterol levels on a plethora of pathological processes such as inflammation. In this context, two-hydroxypropyl-ß-cyclodextrin (CD) is increasingly considered as a novel pharmacological compound to decrease cellular cholesterol levels due to its ability to increase cholesterol solubility. However, recent findings have reported contra-indicating events after the use of CD questioning the clinical applicability of this compound. Given its potential as a therapeutic compound in metabolic inflammatory diseases, in this study, we evaluated the inflammatory effects of CD administration in the context of cholesterol-induced metabolic inflammation in vivo and in vitro. The inflammatory and cholesterol-depleting effects of CD were first investigated in low-density lipoprotein receptor knockout (Ldlr-/ ) mice that were transplanted with Npc1nih or Npc1wt bone marrow and were fed either regular chow or a high-fat, high-cholesterol (HFC) diet for 12 weeks, thereby creating an extreme model of lysosomal cholesterol-induced metabolic inflammation. In the final three weeks, these mice received daily injections of either control (saline) or CD subcutaneously. Subsequently, the inflammatory properties of CD were investigated in vitro in two macrophage cell lines and in murine bone marrow-derived macrophages (BMDMs). While CD administration improved cholesterol mobilization outside lysosomes in BMDMs, an overall pro-inflammatory profile was observed after CD treatment, evidenced by increased hepatic inflammation in vivo and a strong increase in cytokine release and inflammatory gene expression in vitro in murine BMDMs and macrophages cell lines. Nevertheless, this CD-induced pro-inflammatory profile was time-dependent, as short term exposure to CD did not result in a pro-inflammatory response in BMDM. While CD exerts desired cholesterol-depleting effects, its inflammatory effect is dependent on the exposure time. As such, using CD in the clinic, especially in a metabolic inflammatory context, should be closely monitored as it may lead to undesired, pro-inflammatory side effects.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Inflamação/etiologia , 2-Hidroxipropil-beta-Ciclodextrina/efeitos adversos , Animais , Biomarcadores , Linhagem Celular , Colesterol/sangue , Colesterol/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo
19.
Crit Rev Biochem Mol Biol ; 56(4): 426-439, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34182846

RESUMO

Plasma levels of high-density lipoprotein (HDL) inversely correlate with the incidence of cardiovascular diseases (CVD). The causal relationship between plasma HDL-cholesterol levels and CVD has been called into question by Mendelian randomization studies and the majority of clinical trials not showing any benefit of plasma HDL-cholesterol raising drugs on CVD. Nonetheless, recent Mendelian randomization studies including an increased number of CVD cases compared to earlier studies have confirmed that HDL-cholesterol levels and CVD are causally linked. Moreover, several studies in large population cohorts have shown that the cholesterol efflux capacity of HDL inversely correlates with CVD. Cholesterol efflux pathways exert anti-inflammatory and anti-atherogenic effects by suppressing proliferation of hematopoietic stem and progenitor cells, and inflammation and inflammasome activation in macrophages. Cholesterol efflux pathways also suppress the accumulation of cholesteryl esters in macrophages, i.e. macrophage foam cell formation. Recent single-cell RNASeq studies on atherosclerotic plaques have suggested that macrophage foam cells have lower expression of inflammatory genes than non-foam cells, probably reflecting liver X receptor activation, upregulation of ATP Binding Cassette A1 and G1 cholesterol transporters and suppression of inflammation. However, when these pathways are defective lesional foam cells may become pro-inflammatory.


Assuntos
Aterosclerose/metabolismo , HDL-Colesterol/metabolismo , Regulação da Expressão Gênica , RNA-Seq , Análise de Célula Única , Animais , Aterosclerose/genética , Aterosclerose/patologia , Transporte Biológico Ativo/genética , Proliferação de Células , HDL-Colesterol/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Inflamassomos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Análise da Randomização Mendeliana
20.
Circulation ; 143(23): 2293-2309, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097448

RESUMO

Low high-density lipoprotein cholesterol (HDL-C) characterizes an atherogenic dyslipidemia that reflects adverse lifestyle choices, impaired metabolism, and increased cardiovascular risk. Low HDL-C is also associated with increased risk of inflammatory disorders, malignancy, diabetes, and other diseases. This epidemiologic evidence has not translated to raising HDL-C as a viable therapeutic target, partly because HDL-C does not reflect high-density lipoprotein (HDL) function. Mendelian randomization analyses that have found no evidence of a causal relationship between HDL-C levels and cardiovascular risk have decreased interest in increasing HDL-C levels as a therapeutic target. HDLs comprise distinct subpopulations of particles of varying size, charge, and composition that have several dynamic and context-dependent functions, especially with respect to acute and chronic inflammatory states. These functions include reverse cholesterol transport, inhibition of inflammation and oxidation, and antidiabetic properties. HDLs can be anti-inflammatory (which may protect against atherosclerosis and diabetes) and proinflammatory (which may help clear pathogens in sepsis). The molecular regulation of HDLs is complex, as evidenced by their association with multiple proteins, as well as bioactive lipids and noncoding RNAs. Clinical investigations of HDL biomarkers (HDL-C, HDL particle number, and apolipoprotein A through I) have revealed nonlinear relationships with cardiovascular outcomes, differential relationships by sex and ethnicity, and differential patterns with coronary versus noncoronary events. Novel HDL markers may also have relevance for heart failure, cancer, and diabetes. HDL function markers (namely, cholesterol efflux capacity) are associated with coronary disease, but they remain research tools. Therapeutics that manipulate aspects of HDL metabolism remain the holy grail. None has proven to be successful, but most have targeted HDL-C, not metrics of HDL function. Future therapeutic strategies should focus on optimizing HDL function in the right patients at the optimal time in their disease course. We provide a framework to help the research and clinical communities, as well as funding agencies and stakeholders, obtain insights into current thinking on these topics, and what we predict will be an exciting future for research and development on HDLs.


Assuntos
Lipoproteínas HDL/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , História do Século XXI , Humanos , Inflamassomos/metabolismo , Lipoproteínas HDL/sangue , Estresse Oxidativo , Proteômica , Pesquisa/história , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...