Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Microbiome ; 11(1): 159, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491398

RESUMO

BACKGROUND: Cervicovaginal inflammation has been linked to negative reproductive health outcomes including the acquisition of HIV, other sexually transmitted infections, and cervical carcinogenesis. While changes to the vaginal microbiome have been linked to genital inflammation, the molecular relationships between the functional components of the microbiome with cervical immunology in the reproductive tract are understudied, limiting our understanding of mucosal biology that may be important for reproductive health. RESULTS: In this study, we used a multi'-omics approach to profile cervicovaginal samples collected from 43 Canadian women to characterize host, immune, functional microbiome, and metabolome features of cervicovaginal inflammation. We demonstrate that inflammation is associated with lower amounts of L. crispatus and higher levels of cervical antigen-presenting cells (APCs). Proteomic analysis showed an upregulation of pathways related to neutrophil degranulation, complement, and leukocyte migration, with lower levels of cornified envelope and cell-cell adherens junctions. Functional microbiome analysis showed reductions in carbohydrate metabolism and lactic acid, with increases in xanthine and other metabolites. Bayesian network analysis linked L. crispatus with glycolytic and nucleotide metabolism, succinate and xanthine, and epithelial proteins SCEL and IVL as major molecular features associated with pro-inflammatory cytokines and increased APCs. CONCLUSIONS: This study identified key molecular and immunological relationships with cervicovaginal inflammation, including higher APCs, bacterial metabolism, and proteome alterations that underlie inflammation. As APCs are involved in HIV transmission, parturition, and cervical cancer progression, further studies are needed to explore the interactions between these cells, bacterial metabolism, mucosal immunity, and their relationship to reproductive health. Video Abstract.


Assuntos
Infecções por HIV , Humanos , Feminino , Infecções por HIV/microbiologia , Proteômica , Teorema de Bayes , Canadá , Vagina/microbiologia , Inflamação/metabolismo , Citocinas , Células Apresentadoras de Antígenos/metabolismo , Xantinas/metabolismo
2.
Antiviral Res ; 196: 105206, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762975

RESUMO

Vaccination and administration of monoclonal antibody cocktails are effective tools to control the progression of infectious diseases and to terminate pandemics such as COVID-19. However, the emergence of SARS-CoV-2 mutants with enhanced transmissibility and altered antigenicity requires broad-spectrum therapies. Here we developed a panel of SARS-CoV-2 specific mouse monoclonal antibodies (mAbs), and characterized them based on ELISA, Western immunoblot, isotyping, and virus neutralization. Six neutralizing mAbs that exhibited high-affinity binding to SARS-CoV-2 spike protein were identified, and their amino acid sequences were determined by mass spectrometry. Functional assays confirmed that three mAbs, F461G11, F461G15, and F461G16 neutralized four variants of concern (VOC): B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta) These mAbs are promising candidates for COVID-19 therapy, and understanding their interactions with virus spike protein should support further vaccine and antibody development.


Assuntos
Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Técnica de Placa Hemolítica , Humanos , Camundongos , SARS-CoV-2/imunologia
3.
Front Mol Biosci ; 8: 659058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095221

RESUMO

Chlorhexidine (CHX) is an essential medicine used as a topical antiseptic in skin and oral healthcare treatments. The widespread use of CHX has increased concerns regarding the development of antiseptic resistance in Enterobacteria and its potential impact on cross-resistance to other antimicrobials. Similar to other cationic antiseptics, resistance to CHX is believed to be driven by three membrane-based mechanisms: lipid synthesis/transport, altered porin expression, and increased efflux pump activity; however, specific gene and protein alterations associated with CHX resistance remain unclear. Here, we adapted Escherichia coli K-12 BW25113 to increasing concentrations of CHX to determine what phenotypic, morphological, genomic, transcriptomic, and proteomic changes occurred. We found that CHX-adapted E. coli isolates possessed no cross-resistance to any other antimicrobials we tested. Scanning electron microscopy imaging revealed that CHX adaptation significantly altered mean cell widths and lengths. Proteomic analyses identified changes in the abundance of porin OmpF, lipid synthesis/transporter MlaA, and efflux pump MdfA. Proteomic and transcriptomic analyses identified that CHX adaptation altered E. coli transcripts and proteins controlling acid resistance (gadE, cdaR) and antimicrobial stress-inducible pathways Mar-Sox-Rob, stringent response systems. Whole genome sequencing analyses revealed that all CHX-resistant isolates had single nucleotide variants in the retrograde lipid transporter gene mlaA as well as the yghQ gene associated with lipid A transport and synthesis. CHX resistant phenotypes were reversible only when complemented with a functional copy of the mlaA gene. Our results highlight the importance of retrograde phospholipid transport and stress response systems in CHX resistance and the consequences of prolonged CHX exposure.

4.
Front Microbiol ; 12: 628801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746922

RESUMO

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria are mediators of cell survival and pathogenesis by facilitating virulence factor dissemination and resistance to antimicrobials. Studies of OMV properties often focus on hypervesiculating Escherichia coli mutants that have increased OMV production when compared to their corresponding wild-type (WT) strains. Currently, two conventional techniques, ultracentrifugation (UC) and ultradiafiltration (UF), are used interchangeably to isolate OMVs, however, there is concern that each technique may inadvertently alter the properties of isolated OMVs during study. To address this concern, we compared two OMV isolation methods, UC and UF, with respect to final OMV quantities, size distributions, and morphologies using a hypervesiculating Escherichia coli K-12 ΔtolA mutant. Nanoparticle tracking analysis (NTA) indicated that UC techniques result in lower vesicle yields compared to UF. However, UF permitted isolation of OMVs with smaller average sizes than UC, highlighting a potential OMV isolation size bias by each technique. Cryo-transmission electron microscopy (cryo-TEM) visualization of isolated OMVs revealed distinct morphological differences between WT and ΔtolA OMVs, where ΔtolA OMVs isolated by either UC or UF method possessed a greater proportion of OMVs with two or more membranes. Proteomic OMV analysis of WT and ΔtolA OMVs confirmed that ΔtolA enhances inner plasma membrane carryover in multi-lamellar OMVs. This study demonstrates that UC and UF are useful techniques for OMV isolation, where UF may be preferable due to faster isolation, higher OMV yields and enrichment of smaller sized vesicles.

5.
AIDS ; 35(3): 369-380, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181534

RESUMO

OBJECTIVE: The antiretroviral-based dapivirine vaginal ring reduced HIV risk among women in phase III clinical trials. However, limited data exists on the impact of dapivirine on the vaginal microenvironment in adolescents. DESIGN: A comprehensive metaproteomics approach was used to assess host proteome and microbiome changes in cervicovaginal mucus with dapivirine ring use in adolescents enrolled in the MTN-023/IPM 030 (MTN-023) trial. METHODS: Participants were randomized 3 : 1 to use dapivirine or placebo vaginal rings monthly for 6 months. Cervicovaginal samples from a subset of 35 participants (8 placebo, 27 dapivirine) were analyzed. RESULTS: Mass spectrometry analysis identified 405 human and 2467 bacterial proteins belonging to 15 unique genera. The host proteome belonged to many functional pathways primarily related to inflammation. When stratified by study treatment arm, 18 (4.4%) and 28 (6.9%) human proteins were differentially abundant (adjusted P < 0.05) between baseline and follow-up in the placebo and dapivirine arms, respectively. The vaginal microbiome was predominantly composed of Lactobacillus, Gardnerella, and Prevotella. Although bacterial taxa did not differ by arm or change significantly, Lactobacillus crispatus increased (P < 0.001) and Lactobacillus iners decreased (P < 0.001) during the 6-month follow-up. There were no significant differences in bacterial functions by arm or time in the trial. Protected vaginal sex significantly associated with decreased neutrophil inflammatory biomarkers and may be associated with changes in bacterial taxa and metabolism. CONCLUSION: Condom use may associate with differences to inflammation and bacterial function but dapivirine ring use does not, thereby supporting the mucosal safety profile of this vaginal ring for adolescents.


Assuntos
Fármacos Anti-HIV , Dispositivos Anticoncepcionais Femininos , Infecções por HIV , Microbiota , Adolescente , Feminino , Humanos , Lactobacillus , Pirimidinas , Vagina
6.
Am J Reprod Immunol ; 83(6): e13235, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196803

RESUMO

PROBLEM: Pregnant women are at increased risk of HIV acquisition, but the biological mechanisms contributing to this observation are not well understood. METHOD OF STUDY: Here, we assessed host immune and microbiome differences in the vaginal mucosa of healthy pregnant and non-pregnant women using a metaproteomics approach. Cervicovaginal lavage (CVL) samples were collected from 23 pregnant and 25 non-pregnant women. RESULTS: Mass spectrometry analysis of CVL identified 550 human proteins and 376 bacterial proteins from 11 genera. Host proteome analysis indicated 56 human proteins (10%) were differentially abundant (P < .05) between pregnant and non-pregnant women, including proteins involved in angiogenesis (P = 3.36E-3), cell movement of phagocytes (P = 1.34E-6), and permeability of blood vessels (P = 1.27E-4). The major bacterial genera identified were Lactobacillus, Gardnerella, Prevotella, Megasphaera, and Atopobium. Pregnant women had higher levels of Lactobacillus species (P = .017) compared with non-pregnant women. Functional pathway analysis indicated that pregnancy associated with changes to bacterial metabolic pathway involved in energy metabolism, which were increased in pregnant women (P = .035). CONCLUSION: Overall, pregnant women showed differences in the cervicovaginal proteome and microbiome that may be important for HIV infection risk.


Assuntos
Lactobacillus/fisiologia , Microbiota/imunologia , Mucosa/microbiologia , Gravidez , Vagina/imunologia , Adolescente , Adulto , Metabolismo Energético , Feminino , Humanos , Espectrometria de Massas , Pessoa de Meia-Idade , Proteoma , Vagina/microbiologia , Adulto Jovem
7.
Proteomics Clin Appl ; 14(4): e1800182, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31872964

RESUMO

PURPOSE: Antimicrobial resistance (AMR), especially multidrug resistance, is one of the most serious global threats facing public health. The authors proof-of-concept study assessing the suitability of shotgun proteomics as an additional approach to whole-genome sequencing (WGS) for detecting AMR determinants. EXPERIMENTAL DESIGN: Previously published shotgun proteomics and WGS data on four isolates of Campylobacter jejuni are used to perform AMR detection by searching the Comprehensive Antibiotic Resistance Database, and their detection ability relative to genomics screening and traditional phenotypic testing measured by minimum inhibitory concentration is assessed. RESULTS: Both genomic and proteomic approaches identify the wild-type and variant molecular determinants responsible for resistance to tetracycline and ciprofloxacin, in agreement with phenotypic testing. In contrast, the genomic method identifies the presence of the ß-lactamase gene, blaOXA-61 , in three isolates. However, its corresponding protein product is detected in only a single isolate, consistent with results obtained from phenotypic testing.


Assuntos
Campylobacter jejuni/metabolismo , Farmacorresistência Bacteriana/genética , Proteômica/métodos , Antibacterianos/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/genética , Campylobacter jejuni/fisiologia , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana , Tetraciclina/farmacologia , Sequenciamento Completo do Genoma
8.
Mucosal Immunol ; 12(6): 1327-1335, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481749

RESUMO

Animal models recapitulating features of chronic colitis, such as ulcerative colitis, Crohn's disease, or HIV infection, are critical to study disease pathogenesis and test novel therapeutics. In this study, we used a proteomics approach to explore the molecular intestinal response in two rhesus macaque (RM) animal models of experimentally induced colitis using dextran sulfate sodium (DSS) and simian immunodeficiency virus (SIV) infection. Proteomic analysis detected more than 2500 proteins in colonic tissue collected from 30 RMs. Differential protein expression analysis revealed a protein expression pattern in DSS-treated RMs resembling the proteome of human ulcerative colitis. In a group of 12 DSS-treated RMs compared to 6 with no treatment, decrease in expression of proteins related to mitochondrial energy metabolism, including fatty acid metabolism was noted, while innate immune activation pathways, including complement and coagulation proteins were upregulated. SIV infection of RMs resulted in increased innate immune responses related to viral defense. Proteomic signatures of barrier damage were apparent in both DSS treatment or SIV infection. These results demonstrate that DSS treatment in a non-human primate model resembles features of human ulcerative colitis, making this a promising tool to study important immunological mechanisms in inflammatory bowel disease.


Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Proteômica , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/virologia , Colo/imunologia , Colo/virologia , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Imunidade Inata , Macaca mulatta , Masculino , Mitocôndrias/imunologia , Mitocôndrias/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia
9.
Sci Rep ; 8(1): 8059, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795295

RESUMO

Topical microbicides are being explored as an HIV prevention method for individuals who practice receptive anal intercourse. In vivo studies of these microbicides are critical to confirm safety. Here, we evaluated the impact of a rectal microbicide containing the antiviral lectin, Griffithsin (GRFT), on the rectal mucosal proteome and microbiome. Using a randomized, crossover placebo-controlled design, six rhesus macaques received applications of hydroxyethylcellulose (HEC)- or carbopol-formulated 0.1% GRFT gels. Rectal mucosal samples were then evaluated by label-free tandem MS/MS and 16 S rRNA gene amplicon sequencing, for proteomics and microbiome analyses, respectively. Compared to placebo, GRFT gels were not associated with any significant changes to protein levels at any time point (FDR < 5%), but increased abundances of two common and beneficial microbial taxa after 24 hours were observed in HEC-GRFT gel (p < 2E-09). Compared to baseline, both placebo formulations were associated with alterations to proteins involved in proteolysis, activation of the immune response and inflammation after 2 hours (p < 0.0001), and increases in beneficial Faecalibacterium spp. after 24 hours in HEC placebo gel (p = 4.21E-15). This study supports the safety profile of 0.1% GRFT gel as an anti-HIV microbicide and demonstrates that current placebo formulations may associate with changes to rectal proteome and microbiota.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Anti-Infecciosos Locais/administração & dosagem , Infecções por HIV/tratamento farmacológico , Microbiota/genética , Mucosa/efeitos dos fármacos , Lectinas de Plantas/administração & dosagem , Proteoma/análise , Reto/efeitos dos fármacos , Animais , Fármacos Anti-HIV/farmacologia , Géis , Infecções por HIV/metabolismo , Infecções por HIV/microbiologia , HIV-1/efeitos dos fármacos , Humanos , Macaca mulatta , Microbiota/efeitos dos fármacos , Mucosa/metabolismo , Mucosa/microbiologia , Proteoma/efeitos dos fármacos , Reto/metabolismo , Reto/microbiologia
10.
mBio ; 9(1)2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382731

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease. C. trachomatis isolates are classified into 2 biovars-lymphogranuloma venereum (LGV) and trachoma-which are distinguished biologically by their natural host cell infection tropism. LGV biovars infect macrophages and are invasive, whereas trachoma biovars infect oculo-urogenital epithelial cells and are noninvasive. The C. trachomatis plasmid is an important virulence factor in the pathogenesis of these infections. Central to its pathogenic role is the transcriptional regulatory function of the plasmid protein Pgp4, which regulates the expression of plasmid and chromosomal virulence genes. As many gene regulatory functions are post-transcriptional, we employed a comparative proteomic study of cells infected with plasmid-cured C. trachomatis serovars A and D (trachoma biovar), a L2 serovar (LGV biovar), and the L2 serovar transformed with a plasmid containing a nonsense mutation in pgp4 to more completely elucidate the effects of the plasmid on chlamydial infection biology. Our results show that the Pgp4-dependent elevations in the levels of Pgp3 and a conserved core set of chromosomally encoded proteins are remarkably similar for serovars within both C. trachomatis biovars. Conversely, we found a plasmid-dependent, Pgp4-independent, negative regulation in the expression of the chlamydial protease-like activity factor (CPAF) for the L2 serovar but not the A and D serovars. The molecular mechanism of plasmid-dependent negative regulation of CPAF expression in the LGV serovar is not understood but is likely important to understanding its macrophage infection tropism and invasive infection nature.IMPORTANCE The Chlamydia trachomatis plasmid is an important virulence factor in the pathogenesis of chlamydial infection. It is known that plasmid protein 4 (Pgp4) functions in the transcriptional regulation of the plasmid virulence protein 3 (Pgp3) and multiple chromosomal loci of unknown function. Since many gene regulatory functions can be post-transcriptional, we undertook a comparative proteomic analysis to better understand the plasmid's role in chlamydial and host protein expression. We report that Pgp4 is a potent and specific master positive regulator of a common core of plasmid and chromosomal virulence genes shared by multiple C. trachomatis serovars. Notably, we show that the plasmid is a negative regulator of the expression of the chlamydial virulence factor CPAF. The plasmid regulation of CPAF is independent of Pgp4 and restricted to a C. trachomatis macrophage-tropic strain. These findings are important because they define a previously unknown role for the plasmid in the pathophysiology of invasive chlamydial infection.


Assuntos
Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Endopeptidases/biossíntese , Regulação Bacteriana da Expressão Gênica , Plasmídeos , Fatores de Transcrição/metabolismo , Chlamydia trachomatis/química , Células Epiteliais/microbiologia , Células HeLa , Humanos , Proteoma/análise
11.
PLoS One ; 13(1): e0190836, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293692

RESUMO

Whole genome sequencing (WGS) has been used to assess the phylogenetic relationships, virulence and metabolic differences, and the relationship between gene carriage and host or niche differentiation among populations of C. jejuni isolates. We previously characterized the presence and expression of CJIE4 prophage proteins in four C. jejuni isolates using WGS and comparative proteomics analysis, but the isolates were not assessed further. In this study we compare the closed, finished genome sequences of these isolates to the total proteome. Genomes of the four isolates differ in phage content and location, plasmid content, capsular polysaccharide biosynthesis loci, a type VI secretion system, orientation of the ~92 kb invertible element, and allelic differences. Proteins with 99% sequence identity can be differentiated using isobaric tags for relative and absolute quantification (iTRAQ) comparative proteomic methods. GO enrichment analysis and the type of artefacts produced in comparative proteomic analysis depend on whether proteins are encoded in only one isolate or common to all isolates, whether different isolates have different alleles of the proteins analyzed, whether conserved and variable regions are both present in the protein group analyzed, and on how the analysis is done. Several proteins encoded by genes with very high levels of sequence identity in all four isolates exhibited preferentially higher protein expression in only one of the four isolates, suggesting differential regulation among the isolates. It is possible to analyze comparative protein expression in more distantly related isolates in the context of WGS data, though the results are more complex to interpret than when isolates are clonal or very closely related. Comparative proteomic analysis produced log2 fold expression data suggestive of regulatory differences among isolates, indicating that it may be useful as a hypothesis generation exercise to identify regulated proteins and regulatory pathways for more detailed analysis.


Assuntos
Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Genoma Bacteriano , Proteoma/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/classificação , Ontologia Genética , Genômica/métodos , Humanos , Família Multigênica , Filogenia , Prófagos/genética , Prófagos/metabolismo , Proteômica/métodos , Sistemas de Secreção Tipo VI/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-29061747

RESUMO

Acinetobacter baumannii is a notorious opportunistic pathogen that is prevalent mainly in hospital settings. The ability of A. baumannii to adapt and to survive in a range of environments has been a key factor for its persistence and success as an opportunistic pathogen. In this study, we investigated the effect of temperature on the clinically relevant phenotypes displayed by A. baumannii at 37°C and 28°C. Surface-associated motility was significantly reduced at 28°C, while biofilm formation on plastic surfaces was increased at 28°C. Decreased susceptibility to aztreonam and increased susceptibility to trimethoprim-sulfamethoxazole were observed at 28°C. No differences in virulence, as assayed in a Galleria mellonella model, were observed. Proteomic analysis showed differential expression of 629 proteins, of which 366 were upregulated and 263 were downregulated at 28°C. Upregulation of the Csu and iron uptake proteins at 28°C was a key finding for understanding some of the phenotypes displayed by A. baumannii at 28°C.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Adaptação Fisiológica/fisiologia , Antibacterianos/farmacologia , Aztreonam/farmacologia , Temperatura , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Acinetobacter baumannii/patogenicidade , Animais , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Fatores de Virulência
13.
Science ; 356(6341): 938-945, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28572388

RESUMO

Antiretroviral-based strategies for HIV prevention have shown inconsistent results in women. We investigated whether vaginal microbiota modulated tenofovir gel microbicide efficacy in the CAPRISA (Centre for the AIDS Program of Research in South Africa) 004 trial. Two major vaginal bacterial community types-one dominated by Lactobacillus (59.2%) and the other where Gardnerella vaginalis predominated with other anaerobic bacteria (40.8%)-were identified in 688 women profiled. Tenofovir reduced HIV incidence by 61% (P = 0.013) in Lactobacillus-dominant women but only 18% (P = 0.644) in women with non-Lactobacillus bacteria, a threefold difference in efficacy. Detectible mucosal tenofovir was lower in non-Lactobacillus women, negatively correlating with G. vaginalis and other anaerobic bacteria, which depleted tenofovir by metabolism more rapidly than target cells convert to pharmacologically active drug. This study provides evidence linking vaginal bacteria to microbicide efficacy through tenofovir depletion via bacterial metabolism.


Assuntos
Bactérias/metabolismo , Infecções por HIV/microbiologia , Infecções por HIV/prevenção & controle , Microbiota/fisiologia , Tenofovir/metabolismo , Tenofovir/farmacologia , Vagina/microbiologia , Adulto , Antivirais/metabolismo , Antivirais/farmacologia , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Feminino , Gardnerella/metabolismo , Humanos , Lactobacillus/metabolismo , Espectrometria de Massas , Microbiota/genética , Proteoma , RNA Ribossômico 16S/genética , África do Sul , Tenofovir/análise
14.
Int J Antimicrob Agents ; 49(1): 74-80, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27939676

RESUMO

Acinetobacter baumannii AB042, a triclosan-resistant mutant strain, was examined for modulated gene expression using whole-genome sequencing, transcriptomics and proteomics in order to understand the mechanism of triclosan resistance as well as its impact on A. baumannii. Data revealed modulated expression of the fatty acid metabolism pathway, co-factors known to play a role in the synthesis of fatty acids, as well as several transcriptional regulators. The membrane composition of the mutant revealed a decrease in C18 with a corresponding increase in C16 fatty acids compared with the parent strain A. baumannii ATCC 17978. These data indicate that A. baumannii responds to triclosan by altering the expression of genes involved in fatty acid metabolism, antibiotic resistance and amino acid metabolism.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Anti-Infecciosos Locais/farmacologia , Farmacorresistência Bacteriana , Perfilação da Expressão Gênica , Genoma Bacteriano , Proteoma/análise , Triclosan/farmacologia , Metabolismo dos Lipídeos , Redes e Vias Metabólicas/genética , Mutação , Análise de Sequência de DNA
15.
PLoS Pathog ; 12(9): e1005889, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27656899

RESUMO

The mechanism(s) by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT) health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV) using metaproteomic, metagenomic, and in vitro approaches. We found highly diverse bacterial communities dominated by Gardnerella vaginalis associated with host epithelial barrier disruption and enhanced immune activation, and low diversity communities dominated by Lactobacillus species that associated with lower Nugent scores, reduced pH, and expression of host mucosal proteins important for maintaining epithelial integrity. Importantly, proteomic signatures of disrupted epithelial integrity associated with G. vaginalis-dominated communities in the absence of clinical BV diagnosis. Because traditional clinical assessments did not capture this, it likely represents a larger underrepresented phenomenon in populations with high prevalence of G. vaginalis. We finally demonstrated that soluble products derived from G. vaginalis inhibited wound healing, while those derived from L. iners did not, providing insight into functional mechanisms by which FGT bacterial communities affect epithelial barrier integrity.

16.
mBio ; 7(5)2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27677792

RESUMO

The chlamydial protease-like activity factor (CPAF) is hypothesized to be an important secreted virulence factor; however, challenges in denaturing its proteolytic activity have hampered attempts to identify its legitimate targets. Here, we use a genetic and proteomic approach to identify authentic CPAF targets. Human epithelial cells infected with CPAF-sufficient and CPAF-deficient chlamydiae were lysed using known CPAF-denaturing conditions. Their protein profiles were analyzed using isobaric mass tags and liquid chromatography-tandem mass spectrometry. Comparative analysis of CPAF-sufficient and CPAF-deficient infections identified a limited number of CPAF host and chlamydial protein targets. Host targets were primarily interferon-stimulated gene products, whereas chlamydial targets were type III secreted proteins. We provide evidence supporting a cooperative role for CPAF and type III secreted effectors in blocking NF-κB p65 nuclear translocation, resulting in decreased beta interferon and proinflammatory cytokine synthesis. Genetic complementation of null organisms with CPAF restored p65 nuclear translocation inhibition and proteolysis of chlamydial type III secreted effector proteins (T3SEs). We propose that CPAF and T3SEs cooperate in the inhibition of host innate immunity. IMPORTANCE: Chlamydia trachomatis is an important human pathogen responsible for over 100 million infections each year worldwide. Its success as an intracellular pathogen revolves around its ability to evade host immunity. The chlamydial protease-like activity factor (CPAF) is a conserved serine protease secreted into the host cytosol of infected cells that is thought to play an important role in immune evasion. Currently, CPAF's authentic in situ target(s) and mechanism of action in immune evasion are poorly characterized. Using a CPAF-deficient strain and high-throughput proteomics, we report novel CPAF host and chlamydial targets. Host targets were primarily interferon-stimulated genes, whereas chlamydial targets were exclusively type III secreted proteins. We propose a novel mechanism for CPAF and type III secreted proteins in the evasion of host innate immune responses. These findings provide new insights into CPAF's function as a virulence factor and a better understanding of how chlamydiae evade host immunity.

17.
AIDS Res Hum Retroviruses ; 32(10-11): 1005-1015, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27316778

RESUMO

Rectal use of a 1% tenofovir (TFV) gel is currently being evaluated for HIV prevention. While careful assessment of mucosal safety of candidate microbicides is a primary concern, tools to assess mucosal toxicity are limited. Mass spectrometry-based proteomics is a sensitive and high-throughput technique that can provide in-depth information on inflammation processes in biological systems. In this study, we utilized a proteomics approach to characterize mucosal responses in study participants involved in a phase 1 clinical trial of a rectal TFV-based gel. Project Gel was a phase 1 randomized (1:1), double-blind, multisite, placebo-controlled trial in which 24 participants received rectal TFV or a universal placebo [hydroxyethyl cellulose (HEC)] over a course of 8 daily doses. Rectal mucosal swabs were collected after 0, 1, and 8 doses and were analyzed by label-free tandem mass spectrometry. Differential protein expression was evaluated using a combination of paired (time-effects) and unpaired (across study arm) t-tests, and multivariate [least absolute shrinkage and selection operator (LASSO)] modeling. Within the TFV arm, 7% (17/249, p < .05) and 10% (25/249, p < .05) of total proteins changed after 1 and 8 daily applications of TFV gel, respectively, compared to 3% (7/249, p < .05) and 6% (16/249, p < .05) in the HEC arm. Biofunctional analysis associated TFV use with a decrease in epidermal barrier proteins (adj. p = 1.21 × 10-10). Multivariate modeling identified 13 proteins that confidently separated TFV gel users (100% calibration and 96% cross-validation accuracy), including the epithelial integrity factors (FLMNB, CRNN, CALM), serpins (SPB13, SPB5), and cytoskeletal proteins (VILI, VIME, WRD1). This study suggested that daily rectal applications of a 1% TFV gel may be associated with mucosal proteome changes involving epidermal development. Further assessment of more extended use of TFV-gel is recommended to validate these initial associations.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Géis/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Proteínas/análise , Tenofovir/administração & dosagem , Administração Retal , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Placebos/administração & dosagem , Proteômica , Espectrometria de Massas em Tandem
19.
Mucosal Immunol ; 9(1): 194-205, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26104913

RESUMO

Elevated inflammatory cytokines (EMCs) at mucosal surfaces have been associated with HIV susceptibility, but the underlying mechanisms remain unclear. We characterized the soluble mucosal proteome associated with elevated cytokine expression in the female reproductive tract. A scoring system was devised based on the elevation (upper quartile) of at least three of seven inflammatory cytokines in cervicovaginal lavage. Using this score, HIV-uninfected Kenyan women were classified as either having EMC (n=28) or not (n=68). Of 455 proteins quantified in proteomic analyses, 53 were associated with EMC (5% false discovery rate threshold). EMCs were associated with proteases, cell motility, and actin cytoskeletal pathways, whereas protease inhibitor, epidermal cell differentiation, and cornified envelope pathways were decreased. Multivariate analysis identified an optimal signature of 16 proteins that distinguished the EMC group with 88% accuracy. Three proteins in this signature were neutrophil-associated proteases that correlated with many cytokines, especially GM-CSF (granulocyte-macrophage colony-stimulating factor), IL-1ß (interleukin-1ß), MIP-3α (macrophage inflammatory protein-3α), IL-17, and IL-8. Gene set enrichment analyses implicated activated immune cells; we verified experimentally that EMC women had an increased frequency of endocervical CD4(+) T cells. These data reveal strong linkages between mucosal cytokines, barrier function, proteases, and immune cell movement, and propose these as potential mechanisms that increase risk of HIV acquisition.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Proteínas do Citoesqueleto/imunologia , Mucosa/imunologia , Peptídeo Hidrolases/imunologia , Adulto , Linfócitos T CD4-Positivos/citologia , Movimento Celular/imunologia , Quimiocina CCL20/genética , Quimiocina CCL20/imunologia , Citocinas/genética , Proteínas do Citoesqueleto/genética , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genitália Feminina/citologia , Genitália Feminina/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Infecções por HIV , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Quênia , Mucosa/citologia , Análise Multivariada , Peptídeo Hidrolases/genética , Proteômica , Profissionais do Sexo
20.
Mol Cell Neurosci ; 71: 13-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26658803

RESUMO

Discrepancy in synaptic structural plasticity is one of the earliest manifestations of the neurodegenerative state. In prion diseases, a reduction in synapses and dendritic spine densities is observed during preclinical disease in neurons of the cortex and hippocampus. The underlying molecular mechanisms of these alterations have not been identified but microRNAs (miRNAs), many of which are enriched at the synapse, likely regulate local protein synthesis in rapid response to stressors such as replicating prions. MiRNAs are therefore candidate regulators of these early neurodegenerative changes and may provide clues as to the molecular pathways involved. We therefore determined changes in mature miRNA abundance within synaptoneurosomes isolated from prion-infected, as compared to mock-infected animals, at asymptomatic and symptomatic stages of disease. During preclinical disease, miRNAs that are enriched in neurons including miR-124a-3p, miR-136-5p and miR-376a-3p were elevated. At later stages of disease we found increases in miRNAs that have previously been identified as deregulated in brain tissues of prion infected mice, as well as in Alzheimer's disease (AD) models. These include miR-146a-5p, miR-142-3p, miR-143-3p, miR-145a-5p, miR-451a, miR-let-7b, miR-320 and miR-150-5p. A number of miRNAs also decreased in abundance during clinical disease. These included almost all members of the related miR-200 family (miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-141-3p, and miR-429-3p) and the 182 cluster (miR-182-5p and miR-183-5p).


Assuntos
MicroRNAs/genética , Doenças Priônicas/metabolismo , Sinapses/metabolismo , Animais , Dendritos/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Príons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...