Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0254159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34351932

RESUMO

Wind farms can have two broad potential adverse effects on birds via antagonistic processes: displacement from the vicinity of turbines (avoidance), or death through collision with rotating turbine blades. These effects may not be mutually exclusive. Using detailed data from 99 turbines at two wind farms in central Scotland and thousands of GPS-telemetry data from dispersing golden eagles, we tested three hypotheses. Before-and-after-operation analyses supported the hypothesis of avoidance: displacement was reduced at turbine locations in more preferred habitat and with more preferred habitat nearby. After-operation analyses (i.e. from the period when turbines were operational) showed that at higher wind speeds and in highly preferred habitat eagles were less wary of turbines with motionless blades: rejecting our second hypothesis. Our third hypothesis was supported, since at higher wind speeds eagles flew closer to operational turbines; especially-once more-turbines in more preferred habitat. After operation, eagles effectively abandoned inner turbine locations, and flight line records close to rotor blades were rare. While our study indicated that whole-wind farm functional habitat loss through avoidance was the substantial adverse impact, we make recommendations on future wind farm design to minimise collision risk further. These largely entail developers avoiding outer turbine locations which are in and surrounded by swathes of preferred habitat. Our study illustrates the insights which detailed case studies of large raptors at wind farms can bring and emphasises that the balance between avoidance and collision can have several influences.


Assuntos
Conservação dos Recursos Naturais , Águias/fisiologia , Ecossistema , Voo Animal , Telemetria , Vento , Migração Animal , Animais , Escócia
2.
BMC Ecol ; 13: 42, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24192328

RESUMO

BACKGROUND: Dispersal comprises three broad stages - departure from the natal or breeding locations, subsequent travel, and settlement. These stages are difficult to measure, and vary considerably between sexes, age classes, individuals and geographically. We used tracking data from 24 golden eagles, fitted with long-lived GPS satellite transmitters as nestlings, which we followed during their first year. We estimated the timing of emigration from natal sites using ten previously published methods. We propose and evaluate two new methods. The first of these uses published ranging distances of parents as a measure of the natal home range, with the requirement that juveniles must exceed it for a minimum of 10 days (a literature-based measure of the maximum time that a juvenile can survive without food from its parents). The second method uses the biggest difference in the proportion of locations inside and outside of the natal home range smoothed over a 30 day period to assign the point of emigration. We used the latter as the standard against which we compared the ten published methods. RESULTS: The start of golden eagle dispersal occurred from 39 until 250 days after fledging (based on method 12). Previously published methods provided very different estimates of the point of emigration with a general tendency for most to apparently assign it prematurely. By contrast the two methods we proposed provided very similar estimates for the point of emigration that under visual examination appeared to fit the definition of emigration much better. CONCLUSIONS: We have used simple methods to decide when an individual has dispersed - they are rigorous and repeatable. Despite one method requiring much more information, both methods provided robust estimates for when individuals emigrated at the start of natal dispersal. Considerable individual variation in recorded behaviour appears to account for the difficulty capturing the point of emigration and these results demonstrate the potential pitfalls associated with species exhibiting complex dispersal behaviour. We anticipate that coupled with the rapidly increasing availability of tracking data, our new methods will, for at least some species, provide a far simpler and more biologically representative approach to determine the timing of emigration.


Assuntos
Distribuição Animal , Aves Predatórias/fisiologia , Animais , Sistemas de Informação Geográfica , Escócia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA