Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 36(12): 109720, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551296

RESUMO

Pathological hyperphosphorylation and aggregation of tau (pTau) and neuroinflammation, driven by interleukin-1ß (IL-1ß), are the major hallmarks of tauopathies. Here, we show that pTau primes and activates IL-1ß. First, RNA-sequence analysis suggests paired-helical filaments (PHFs) from human tauopathy brain primes nuclear factor κB (NF-κB), chemokine, and IL-1ß signaling clusters in human primary microglia. Treating microglia with pTau-containing neuronal media, exosomes, or PHFs causes IL-1ß activation, which is NLRP3, ASC, and caspase-1 dependent. Suppression of pTau or ASC reduces tau pathology and inflammasome activation in rTg4510 and hTau mice, respectively. Although the deletion of MyD88 prevents both IL-1ß expression and activation in the hTau mouse model of tauopathy, ASC deficiency in myeloid cells reduces pTau-induced IL-1ß activation and improves cognitive function in hTau mice. Finally, pTau burden co-exists with elevated IL-1ß and ASC in autopsy brains of human tauopathies. Together, our results suggest pTau activates IL-1ß via MyD88- and NLRP3-ASC-dependent pathways in myeloid cells, including microglia.


Assuntos
Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Transdução de Sinais , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Interleucina-1beta/genética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Células Mieloides/citologia , Células Mieloides/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tauopatias/metabolismo , Proteínas tau/genética
2.
J Neuroinflammation ; 18(1): 161, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34275478

RESUMO

BACKGROUND: The presence of hyperphosphorylated microtubule-associated protein tau is strongly correlated with cognitive decline and neuroinflammation in Alzheimer's disease and related tauopathies. However, the role of inflammation and anti-inflammatory interventions in tauopathies is unclear. Our goal was to determine if removing anti-inflammatory interleukin-10 (IL-10) during an acute inflammatory challenge has any effect on neuronal tau pathology. METHODS: We induce systemic inflammation in Il10-deficient (Il10-/-) versus Il10+/+ (Non-Tg) control mice using a single intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) to examine microglial activation and abnormal hyperphosphorylation of endogenous mouse tau protein. Tau phosphorylation was quantified by Western blotting and immunohistochemistry. Microglial morphology was quantified by skeleton analysis. Cytokine expression was determined by multiplex electro chemiluminescent immunoassay (MECI) from Meso Scale Discovery (MSD). RESULTS: Our findings show that genetic deletion of Il10 promotes enhanced neuroinflammation and tau phosphorylation. First, LPS-induced tau hyperphosphorylation was significantly increased in Il10-/- mice compared to controls. Second, LPS-treated Il10-/- mice showed signs of neurodegeneration. Third, LPS-treated Il10-/- mice showed robust IL-6 upregulation and direct treatment of primary neurons with IL-6 resulted in tau hyperphosphorylation on Ser396/Ser404 site. CONCLUSIONS: These data support that loss of IL-10 activates microglia, enhances IL-6, and leads to hyperphosphorylation of tau on AD-relevant epitopes in response to acute systemic inflammation.


Assuntos
Inflamação/metabolismo , Interleucina-10/deficiência , Interleucina-10/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Técnicas de Cultura de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos
3.
Neurobiol Dis ; 126: 124-136, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30010004

RESUMO

BACKGROUND: Hypertension-induced microvascular brain injury is a major vascular contributor to cognitive impairment and dementia. We hypothesized that chronic hypoxia promotes the hyperphosphorylation of tau and cell death in an accelerated spontaneously hypertensive stroke prone rat model of vascular cognitive impairment. METHODS: Hypertensive male rats (n = 13) were fed a high salt, low protein Japanese permissive diet and were compared to Wistar Kyoto control rats (n = 5). RESULTS: Using electron paramagnetic resonance oximetry to measure in vivo tissue oxygen levels and magnetic resonance imaging to assess structural brain damage, we found compromised gray (dorsolateral cortex: p = .018) and white matter (corpus callosum: p = .016; external capsule: p = .049) structural integrity, reduced cerebral blood flow (dorsolateral cortex: p = .005; hippocampus: p < .001; corpus callosum: p = .001; external capsule: p < .001) and a significant drop in cortical oxygen levels (p < .05). Consistently, we found reduced oxygen carrying neuronal neuroglobin (p = .008), suggestive of chronic cerebral hypoperfusion in high salt-fed rats. We also observed a corresponding increase in free radicals (NADPH oxidase: p = .013), p-Tau (pThr231) in dorsolateral cortex (p = .011) and hippocampus (p = .003), active interleukin-1ß (p < .001) and neurodegeneration (dorsolateral cortex: p = .043, hippocampus: p = .044). Human patients with subcortical ischemic vascular disease, a type of vascular dementia (n = 38; mean age = 68; male/female ratio = 23/15) showed reduced hippocampal volumes and cortical shrinking (p < .05) consistent with the neuronal cell death observed in our hypertensive rat model as compared to healthy controls (n = 47; mean age = 63; male/female ratio = 18/29). CONCLUSIONS: Our data support an association between hypertension-induced vascular dysfunction and the sporadic occurrence of phosphorylated tau and cell death in the rat model, correlating with patient brain atrophy, which is relevant to vascular disease.


Assuntos
Encéfalo/patologia , Hipóxia Celular/fisiologia , Demência Vascular/patologia , Proteínas tau/metabolismo , Idoso , Animais , Demência Vascular/metabolismo , Feminino , Humanos , Hipertensão/complicações , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade , Fosforilação , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
4.
Int J Cancer ; 138(3): 770-5, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26238259

RESUMO

Chronic inflammation is a risk factor for colorectal cancer. The MAPK-activated protein kinase 2 (MK2) pathway controls multiple cellular processes including p38-dependent inflammation. This is the first study to investigate the role of MK2 in development of colitis-associated colon cancer (CAC). Herein, we demonstrate that MK2(-/-) mice are highly resistant to neoplasm development when exposed to AOM/DSS, while wild type (WT) C57BL/6 develop multiple neoplasms with the same treatment. MK2-specific cytokines IL-1, IL-6 and TNF-α were substantially decreased in AOM/DSS treated MK2(-/-) mouse colon tissues compared with WT mice, which coincided with a marked decrease in macrophage influx. Restoring MK2-competent macrophages by injecting WT bone marrow derived macrophages into MK2(-/-) mice led to partial restoration of inflammatory cytokine production with AOM/DSS treatment; however, macrophages were not sufficient to induce neoplasm development. These results indicate that MK2 functions as an inflammatory regulator to promote colonic neoplasm development and may be a potential target for CAC.


Assuntos
Neoplasias Colorretais/etiologia , Inflamação/complicações , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Neoplasias Colorretais/prevenção & controle , Citocinas/biossíntese , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
5.
Oncotarget ; 6(26): 22338-47, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26061815

RESUMO

Granulocyte colony-stimulating factor (G-CSF) is a cytokine that is highly expressed in human and mouse colorectal cancers (CRC). We previously reported that G-CSF stimulated human CRC cell growth and migration, therefore in this study we sought to examine the therapeutic potential of anti-G-CSF treatment for CRC. G-CSF is known to mobilize neutrophils, however its impact on other immune cells has not been well examined. Here, we investigated the effects of therapeutic anti-G-CSF treatment on CRC growth and anti-tumor immune responses. C57BL/6 mice treated with azoxymethane/dextran sodium sulfate (AOM/DSS) to induce neoplasms were administered anti-G-CSF or isotype control antibodies three times a week for three weeks. Animals treated with anti-G-CSF antibodies had a marked decrease in neoplasm number and size compared to the isotype control group. Colon neutrophil and macrophage frequency were unchanged, but the number of macrophages producing IL-10 were decreased while IL-12 producing macrophages were increased. NK cells were substantially increased in colons of anti-G-CSF treated mice, along with IFNγ producing CD4(+) and CD8(+) T cells. These studies are the first to indicate a crucial role for G-CSF inhibition in promoting protective anti-tumor immunity, and suggest that anti-G-CSF treatment is a potential therapeutic approach for CRC.


Assuntos
Anticorpos Neutralizantes/farmacologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Fator Estimulador de Colônias de Granulócitos/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
6.
PLoS One ; 7(5): e37387, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666352

RESUMO

BACKGROUND: Single cell genomics (SCG) is a combination of methods whose goal is to decipher the complete genomic sequence from a single cell and has been applied mostly to organisms with smaller genomes, such as bacteria and archaea. Prior single cell studies showed that a significant portion of a genome could be obtained. However, breakages of genomic DNA and amplification bias have made it very challenging to acquire a complete genome with single cells. We investigated an artificial method to induce polyploidy in Bacillus subtilis ATCC 6633 by blocking cell division and have shown that we can significantly improve the performance of genomic sequencing from a single cell. METHODOLOGY/PRINCIPAL FINDINGS: We inhibited the bacterial cytoskeleton protein FtsZ in B.subtilis with an FtsZ-inhibiting compound, PC190723, resulting in larger undivided single cells with multiple copies of its genome. qPCR assays of these larger, sorted cells showed higher DNA content, have less amplification bias, and greater genomic recovery than untreated cells. SIGNIFICANCE: The method presented here shows the potential to obtain a nearly complete genome sequence from a single bacterial cell. With millions of uncultured bacterial species in nature, this method holds tremendous promise to provide insight into the genomic novelty of yet-to-be discovered species, and given the temporary effects of artificial polyploidy coupled with the ability to sort and distinguish differences in cell size and genomic DNA content, may allow recovery of specific organisms in addition to their genomes.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/genética , Genoma Bacteriano/genética , Genômica/métodos , Poliploidia , Análise de Célula Única/métodos , Bacillus subtilis/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , DNA Bacteriano/metabolismo , Piridinas/farmacologia , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA