Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 40(2): 134-139, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27320079

RESUMO

Chemical warfare nerve agents (CWNA) inhibit acetylcholinesterase and are among the most lethal chemicals known to man. Children are predicted to be vulnerable to CWNA exposure because of their smaller body masses, higher ventilation rates and immature central nervous systems. While a handful of studies on the effects of CWNA in younger animals have been published, exposure routes relevant to battlefield or terrorist situations (i.e. inhalation for sarin) were not used. Thus, we estimated the 24 h LC50 for whole-body (10 and 60 min) exposure to sarin using a stagewise, adaptive dose design. Specifically, male and female Sprague-Dawley rats were exposed to a range of sarin concentrations (6.2-44.0 or 1.6-12.5 mg/m³) for either 10 or 60 min, respectively, at six different times during their development (postnatal day [PND] 7, 14, 21, 28, 42 and 70). For male and female rats, the lowest LC50 values were observed for PND 14 and the highest LC50 values for PND 28. Sex differences were observed only for PND 42 for the 10 min exposures and PND 21 and 70 for the 60 min exposures. Thus, younger rats (PND 14) were more susceptible than older rats (PND 70) to the lethal effects of whole-body exposure to sarin, while adolescent (PND 28) rats were the least susceptible and sex differences were minimal. These results underscore the importance of controlling for the age of the animal in research on the toxic effects associated with CWNA exposure.


Assuntos
Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Sarina/toxicidade , Fatores Etários , Animais , Relação Dose-Resposta a Droga , Feminino , Exposição por Inalação , Dose Letal Mediana , Masculino , Ratos Sprague-Dawley , Fatores Sexuais , Fatores de Tempo
2.
Toxicol Lett ; 241: 167-74, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26621540

RESUMO

Children may be inherently more vulnerable than adults to the lethal effects associated with chemical warfare nerve agent (CWNA) exposure because of their closer proximity to the ground, smaller body mass, higher respiratory rate, increased skin permeability and immature metabolic systems. Unfortunately, there have only been a handful of studies on the effects of CWNA in pediatric animal models, and more research is needed to confirm this hypothesis. Using a stagewise, adaptive dose design, we estimated the 24h median lethal dose for subcutaneous exposure to seven CWNA in both male and female Sprague-Dawley rats at six different developmental times. Perinatal (postnatal day [PND] 7, 14 and 21) and adult (PND 70) rats were more susceptible than pubertal (PND 28 and 42) rats to the lethal effects associated with exposure to tabun, sarin, soman and cyclosarin. Age-related differences in susceptibility were not observed in rats exposed to VM, Russian VX or VX.


Assuntos
Envelhecimento/fisiologia , Substâncias para a Guerra Química/toxicidade , Agentes Neurotóxicos/toxicidade , Animais , Relação Dose-Resposta a Droga , Feminino , Injeções Subcutâneas , Dose Letal Mediana , Masculino , Ratos , Ratos Sprague-Dawley
3.
Inhal Toxicol ; 19(8): 667-81, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17510839

RESUMO

To improve toxicity estimates from sublethal exposures to chemical warfare nerve agents (CWNA), it is necessary to generate mathematical models of the absorption, distribution, and elimination of nerve agents. However, current models are based on representative data sets generated with different routes of exposure and in different species and are designed to interpolate between limited laboratory data sets to predict a wide range of possible human exposure scenarios. This study was performed to integrate CWNA sublethal toxicity data in male Duncan Hartley guinea pigs. Specific goal was to compare uptake and clearance kinetics of different sublethal doses of sarin (either 0.1 x or 0.4 x LC50) in blood and tissues of guinea pigs exposed to agent by acute whole-body inhalation exposure after the 60-min LC50 was determined. Arterial catheterization allowed repeated blood sampling from the same animal at various time periods. Blood and tissue levels of acetylcholinesterase, butyrylcholinesterase, and regenerated sarin (rGB) were determined at various time points during and following sarin exposure. The following pharmacokinetic parameters were calculated from the graph of plasma or RBC rGB concentration versus time: time to reach the maximal concentration; maximal concentration; mean residence time; clearance; volume of distribution at steady state; terminal elimination-phase rate constant; and area under plasma concentration time curve extrapolated to infinity using the WinNonlin analysis program 5.0. Plasma and RBC t(1/2) for rGB was also calculated. Data will be used to develop mathematical model of absorption and distribution of sublethal sarin doses into susceptible tissues.


Assuntos
Exposição por Inalação/análise , Sarina/administração & dosagem , Sarina/farmacocinética , Animais , Câmaras de Exposição Atmosférica , Cobaias , Dose Letal Mediana , Masculino , Sarina/sangue , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...