Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563246

RESUMO

BACKGROUND: Improving health-related quality of life (HRQOL) has emerged as a priority in the management of nontuberculous mycobacterial pulmonary disease (NTM-PD). We aimed to evaluate HRQOL and its changes after 6 months' treatment in patients with NTM-PD. METHODS: The NTM-KOREA is a nationwide prospective cohort enrolling patients initiating treatment for NTM-PD in 8 institutions across South Korea. We conducted the Quality of Life-Bronchiectasis (QOL-B) at 6-month intervals and evaluated baseline scores (higher scores indicate better quality of life) and changes after 6 months' treatment. Multivariate logistic regression was performed to identify factors associated with improvement in the QOL-B physical functioning and respiratory symptoms domains. RESULTS: Between February 2022 and August 2023, 411 patients were included in the analysis. Baseline scores (95% confidence interval [CI]) for physical functioning and respiratory symptoms were 66.7 (46.7-86.7) and 81.5 (70.4-92.6), respectively. Among 228 patients who completed the QOL-B after 6 months' treatment, improvements in physical functioning and respiratory symptoms were observed in 61 (26.8%) and 71 (31.1%) patients, respectively. A lower score (adjusted odds ratio; 95% CI) for physical functioning (0.93; 0.91-0.96) and respiratory symptoms (0.92; 0.89-0.95) at treatment initiation was associated with a greater likelihood of physical functioning and respiratory symptom improvement, respectively; achieving culture conversion was not associated with improvement in physical functioning (0.62; 0.28-1.39) or respiratory symptoms (1.30; 0.62-2.74). CONCLUSIONS: After 6 months of antibiotic treatment for NTM-PD, HRQOL improved in almost one-third, especially in patients with severe initial symptoms, regardless of culture conversion. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov identifier: NCT03934034.

2.
Front Microbiol ; 15: 1344914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585695

RESUMO

Although the incidence of Mycobacterium abscessus infection has recently increased significantly, treatment is difficult because this bacterium is resistant to most anti-tuberculosis drugs. In particular, M. abscessus is often resistant to available macrolide antibiotics, so therapeutic options are extremely limited. Hence, there is a pressing demand to create effective drugs or therapeutic regimens for M. abscessus infections. The aim of the investigation was to assess the capability of isoegomaketone (iEMK) as a therapeutic option for treating M. abscessus infections. We determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of iEMK for both reference and clinically isolated M. abscessus strains. In addition to time-kill and biofilm formation assays, we evaluated iEMK's capability to inhibit M. abscessus growth in macrophages using an intracellular colony counting assay. iEMK inhibited the growth of reference and clinically isolated M. abscessus strains in macrophages and demonstrated effectiveness at lower concentrations against macrophage-infected M. abscessus than when used to treat the bacteria directly. Importantly, iEMK also exhibited anti-biofilm properties and the potential to mitigate macrolide-inducible resistance, underscoring its promise as a standalone or adjunctive therapeutic agent. Overall, our results suggest that further development of iEMK as a clinical drug candidate is promising for inhibiting M. abscessus growth, especially considering its dual action against both planktonic bacteria and biofilms.

3.
Ann Am Thorac Soc ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285897

RESUMO

Rationale The clinical implications of trehalose 6,6'-dimycolate (TDM) in nontuberculous mycobacterial pulmonary disease have not been studied. Objective To examine the presence of TDM in clinical isolates obtained from patients with Mycobacterium avium complex (MAC) pulmonary disease (PD) and its impact on disease severity and treatment outcomes. Methods We analyzed clinical isolates from patients diagnosed with MAC-PD at Seoul National University Hospital between January 1, 2019, and December 31, 2021. The lipids were extracted from clinical isolates obtained at the time of diagnosis using mass spectrometry. Mass peaks between 300 and 3,500 m/z were obtained, and the peak patterns of the total lipids were analyzed. Results TDMs were identified in clinical isolates from 176 out of 343 patients. Cavities were more prevalent in patients with TDM-negative isolates (19.8%) than in patients with TDM-positive isolates (10.2%) (P=0.015). The time to antibiotic treatment was shorter in patients with TDM-negative isolates (4 months, interquartile range [IQR] 2-10) than in patients with TDM-positive isolates (7 months, IQR 3-16, P=0.032). Patients with TDM-negative isolates had a significantly lower proportion of culture conversions (P=0.012). TDM was associated with higher likelihood of culture conversion (adjusted hazard ratio, 2.29; P=0.035). Conclusions TDM-negative isolates were linked to a higher occurrence of cavities, earlier initiation of treatment, and worse treatment outcome in MAC-PD patients.

4.
J Glob Antimicrob Resist ; 36: 45-49, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128724

RESUMO

OBJECTIVES: Genetic changes in Mycobacterium abscessus during antibiotic treatment are not fully understood. This study aimed to investigate the genetic changes in M. abscessus in patients receiving antibiotic treatment, and their clinical implications. METHODS: Pretreatment and 12-month post-treatment M. abscessus isolates were obtained from patients with M. abscessus pulmonary disease. Isolates from each time point were separated into six groups based on their distinctive morphological characteristics. Twenty-four isolates, comprising 12 from patient A exhibiting progressive disease and 12 from patient B demonstrating stable disease, underwent sequencing. Subsequently, minimal inhibitory concentrations (MICs) for the administered antibiotics were measured. RESULTS: Persistent infection with a single strain was observed in patients A and B. During 12 months of treatment, MICs for administered drugs did not generally change over time in either patient and single nucleotide variations (SNV) associated with antimicrobial resistance (rrl, rrs, erm(41), gyrA, gyrB, whiB7 and hflX) were not mutated. Although not significant, 47 and 52 non-synonymous SNVs occurred in M. abscessus from patients A and B, respectively, and the accumulation of these SNVs differed in patients A and B, except for five SNVs. The most variable positions were within a probable NADH-dependent glutamate synthase gene and a putative YrbE family protein gene in patients A and B, respectively. CONCLUSIONS: Persistent infections by a single strain of M. abscessus were observed in two patients with different clinical courses. Genetic changes in M. abscessus during antibiotic treatment were relatively stable in these patients. CLINICAL TRIALS IDENTIFIER: NCT01616745 (ClinicalTrials.gov ID).


Assuntos
Pneumopatias , Mycobacterium abscessus , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Mycobacterium abscessus/genética
5.
Pathogens ; 12(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38133329

RESUMO

Mycobacterium peregrinum (Mpgm) is a rapidly growing mycobacteria that is classified as a nontuberculous mycobacterium (NTM) and is commonly found in environmental sources such as soil, water, and animals. Mpgm is considered an opportunistic pathogen that causes infection in immunocompromised individuals or those with underlying medical conditions. Although there have been clinical reports on Mpgm, reports of the immune response and metabolic reprogramming have not been published. Thus, we studied standard Mpgm-ATCC and two clinical strains (Mpgm-S and Mpgm-R) using macrophages and mouse bone marrow-derived cells. Mpgm has two types of colony morphologies: smooth and rough. We grew all strains on the 7H10 agar medium to visually validate the morphology. Cytokine levels were measured via ELISA and real-time PCR. The changes in mitochondrial function and glycolysis in Mpgm-infected macrophages were measured using an extracellular flux analyzer. Mpgm-S-infected macrophages showed elevated levels of inflammatory cytokines, including interleukin (IL)-6, IL-12p40, and tumor necrosis factor (TNF)-α, compared to Mpgm-ATCC- and Mpgm-R-infected macrophages. Additionally, our findings revealed metabolic changes in Mpgm-ATCC and two clinical strains (Mpgm-S and Mpgm-R) during infection; significant changes were observed in the mitochondrial respiration, extracellular acidification, and the oxygen consumption of BMDMs upon Mpgm-S infection. In summary, within the strains examined, Mpgm-S displayed greater virulence, triggered a heightened immune response, and induced more profound shifts in bioenergetic metabolism than Mpgm-ATCC and Mpgm-R. This study is the first to document distinct immune responses and metabolic reorganization following Mpgm infection. These findings lay a crucial foundation for further investigations into the pathogenesis of Mpgm.

6.
Cell Biosci ; 13(1): 49, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882813

RESUMO

BACKGROUND: Itaconate, a crucial immunometabolite, plays a critical role in linking immune and metabolic functions to influence host defense and inflammation. Due to its polar structure, the esterified cell-permeable derivatives of itaconate are being developed to provide therapeutic opportunities in infectious and inflammatory diseases. Yet, it remains largely uncharacterized whether itaconate derivatives have potentials in promoting host-directed therapeutics (HDT) against mycobacterial infections. Here, we report dimethyl itaconate (DMI) as the promising candidate for HDT against both Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria by orchestrating multiple innate immune programs. RESULTS: DMI per se has low bactericidal activity against Mtb, M. bovis Bacillus Calmette-Guérin (BCG), and M. avium (Mav). However, DMI robustly activated intracellular elimination of multiple mycobacterial strains (Mtb, BCG, Mav, and even to multidrug-resistant Mtb) in macrophages and in vivo. DMI significantly suppressed the production of interleukin-6 and -10, whereas it enhanced autophagy and phagosomal maturation, during Mtb infection. DMI-mediated autophagy partly contributed to antimicrobial host defenses in macrophages. Moreover, DMI significantly downregulated the activation of signal transducer and activator of transcription 3 signaling during infection with Mtb, BCG, and Mav. CONCLUSION: Together, DMI has potent anti-mycobacterial activities in macrophages and in vivo through promoting multifaceted ways for innate host defenses. DMI may bring light to new candidate for HDT against Mtb and nontuberculous mycobacteria, both of which infections are often intractable with antibiotic resistance.

7.
Antimicrob Agents Chemother ; 66(9): e0076222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36040172

RESUMO

Accumulating evidence suggests that drug repurposing has drawn attention as an anticipative strategy for controlling tuberculosis (TB), considering the dwindling drug discovery and development pipeline. In this study, we explored the antigout drug febuxostat and evaluated its antibacterial activity against Mycobacterium species. Based on MIC evaluation, we found that febuxostat treatment significantly inhibited mycobacterial growth, especially that of Mycobacterium tuberculosis (Mtb) and its phylogenetically close neighbors, M. bovis, M. kansasii, and M. shinjukuense, but these microorganisms were not affected by allopurinol and topiroxostat, which belong to a similar category of antigout drugs. Febuxostat concentration-dependently affected Mtb and durably mediated inhibitory functions (duration, 10 weeks maximum), as evidenced by resazurin microtiter assay, time-kill curve analysis, phenotypic susceptibility test, and the Bactec MGIT 960 system. Based on these results, we determined whether the drug shows antimycobacterial activity against Mtb inside murine bone marrow-derived macrophages (BMDMs). Notably, febuxostat markedly suppressed the intracellular growth of Mtb in a dose-dependent manner without affecting the viability of BMDMs. Moreover, orally administered febuxostat was efficacious in a murine model of TB with reduced bacterial loads in both the lung and spleen without the exacerbation of lung inflammation, which highlights the drug potency. Taken together, unexpectedly, our data demonstrated that febuxostat has the potential for treating TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Alopurinol , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Febuxostat/farmacologia , Febuxostat/uso terapêutico , Camundongos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
8.
Gut Microbes ; 14(1): 2073132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579969

RESUMO

Nontuberculous mycobacterial pulmonary diseases (NTM-PDs) are emerging as global health threats with issues of antibiotic resistance. Accumulating evidence suggests that the gut-lung axis may provide novel candidates for host-directed therapeutics against various infectious diseases. However, little is known about the gut-lung axis in the context of host protective immunity to identify new therapeutics for NTM-PDs. This study was performed to identify gut microbes and metabolites capable of conferring pulmonary immunity to NTM-PDs. Using metabolomics analysis of sera from NTM-PD patients and mouse models, we showed that the levels of l-arginine were decreased in sera from NTM-PD patients and NTM-infected mice. Oral administration of l-arginine significantly enhanced pulmonary antimicrobial activities with the expansion of IFN-γ-producing effector T cells and a shift to microbicidal (M1) macrophages in the lungs of NTM-PD model mice. Mice that received fecal microbiota transplants from l-arginine-treated mice showed increased protective host defense in the lungs against NTM-PD, whereas l-arginine-induced pulmonary host defense was attenuated in mice treated with antibiotics. Using 16S rRNA sequencing, we further showed that l-arginine administration resulted in enrichment of the gut microbiota composition with Bifidobacterium species. Notably, oral treatment with either Bifidobacterium pseudolongum or inosine enhanced antimicrobial pulmonary immune defense against NTM infection, even with multidrug-resistant clinical NTM strains. Our findings indicate that l-arginine-induced gut microbiota remodeling with enrichment of B. pseudolongum boosts pulmonary immune defense against NTM infection by driving the protective gut-lung axis in vivo.


Assuntos
Microbioma Gastrointestinal , Infecções por Mycobacterium não Tuberculosas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Arginina , Humanos , Pulmão , Camundongos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , RNA Ribossômico 16S
9.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457208

RESUMO

Ulcerative colitis is a complex inflammatory bowel disorder disease that can induce rectal and colonic dysfunction. Although the prevalence of IBD in Western countries is almost 0.5% of the general population, genetic causes are still not fully understood. In a recent discovery, itaconate was found to function as an immune-modulating metabolite in mammalian immune cells, wherein it is synthesized as an antimicrobial compound from the citric acid cycle intermediate cis-aconitic acid. However, the association between the Acod1 (Aconitate decarboxylase 1)-itaconate axis and ulcerative colitis has rarely been studied. To elucidate this, we established a DSS-induced colitis model with Acod1-deficient mice and then measured the mouse body weights, colon lengths, histological changes, and cytokines/chemokines in the colon. We first confirmed the upregulation of Acod1 RNA and protein expression levels in DSS-induced colitis. Then, we found that colitis symptoms, including weight loss, the disease activity index, and colon shortening, were worsened by the depletion of Acod1. In addition, the extent of intestinal epithelial barrier breakdown, the extent of immune cell infiltration, and the expression of proinflammatory cytokines and chemokines in Acod1-deficient mice were higher than those in wild-type mice. Finally, we confirmed that 4-octyl itaconate (4-OI) alleviated DSS-induced colitis in Acod1-deficient mice and decreased the expression of inflammatory cytokines and chemokines. To our knowledge, this study is the first to elucidate the role of the Acod1-itaconate axis in colitis. Our data clearly showed that Acod1 deletion resulted in severe DSS-induced colitis and substantial increases in inflammatory cytokine and chemokine levels. Our results suggest that Acod1 may normally play an important regulatory role in the pathogenesis of colitis, demonstrating the potential for novel therapies using 4-OI.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Carboxiliases , Quimiocinas/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colite Ulcerativa/patologia , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/patologia , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sulfatos
10.
Autophagy ; 18(12): 2926-2945, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35316156

RESUMO

The N-degron pathway is a proteolytic system in which the N-terminal degrons (N-degrons) of proteins, such as arginine (Nt-Arg), induce the degradation of proteins and subcellular organelles via the ubiquitin-proteasome system (UPS) or macroautophagy/autophagy-lysosome system (hereafter autophagy). Here, we developed the chemical mimics of the N-degron Nt-Arg as a pharmaceutical means to induce targeted degradation of intracellular bacteria via autophagy, such as Salmonella enterica serovar Typhimurium (S. Typhimurium), Escherichia coli, and Streptococcus pyogenes as well as Mycobacterium tuberculosis (Mtb). Upon binding the ZZ domain of the autophagic cargo receptor SQSTM1/p62 (sequestosome 1), these chemicals induced the biogenesis and recruitment of autophagic membranes to intracellular bacteria via SQSTM1, leading to lysosomal degradation. The antimicrobial efficacy was independent of rapamycin-modulated core autophagic pathways and synergistic with the reduced production of inflammatory cytokines. In mice, these drugs exhibited antimicrobial efficacy for S. Typhimurium, Bacillus Calmette-Guérin (BCG), and Mtb as well as multidrug-resistant Mtb and inhibited the production of inflammatory cytokines. This dual mode of action in xenophagy and inflammation significantly protected mice from inflammatory lesions in the lungs and other tissues caused by all the tested bacterial strains. Our results suggest that the N-degron pathway provides a therapeutic target in host-directed therapeutics for a broad range of drug-resistant intracellular pathogens.Abbreviations: ATG: autophagy-related gene; BCG: Bacillus Calmette-Guérin; BMDMs: bone marrow-derived macrophages; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CFUs: colony-forming units; CXCL: C-X-C motif chemokine ligand; EGFP: enhanced green fluorescent protein; IL1B/IL-1ß: interleukin 1 beta; IL6: interleukin 6; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PB1: Phox and Bem1; SQSTM1/p62: sequestosome 1; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1: Tax1 binding protein 1; TNF: tumor necrosis factor; UBA: ubiquitin-associated.


Assuntos
Autofagia , Macroautofagia , Animais , Camundongos , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Vacina BCG , Ubiquitina/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Salmonella typhimurium/metabolismo , Citocinas/metabolismo , Sirolimo/farmacologia
11.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269631

RESUMO

Mycobacterium mucogenicum (Mmuc), a rapidly growing nontuberculous mycobacterium (NTM), can infect humans (posttraumatic wound infections and catheter-related sepsis). Similar to other NTM species, Mmuc exhibits colony morphologies of rough (Mmuc-R) and smooth (Mmuc-S) types. Although there are several case reports on Mmuc infection, no experimental evidence supports that the R-type is more virulent. In addition, the immune response and metabolic reprogramming of Mmuc have not been studied on the basis of morphological characteristics. Thus, a standard ATCC Mmuc strain and two clinical strains were analyzed, and macrophages were generated from mouse bone marrow. Cytokines and cell death were measured by ELISA and FACS, respectively. Mitochondrial respiration and glycolytic changes were measured by XF seahorse. Higher numbers of intracellular bacteria were found in Mmuc-R-infected macrophages than in Mmuc-S-infected macrophages. Additionally, Mmuc-R induced higher levels of the cytokines TNF-α, IL-6, IL-12p40, and IL-10 and induced more BMDM necrotic death. Furthermore, our metabolic data showed marked glycolytic and respiratory differences between the control and each type of Mmuc infection, and changes in these parameters significantly promoted glucose metabolism, extracellular acidification, and oxygen consumption in BMDMs. In conclusion, at least in the strains we tested, Mmuc-R is more virulent, induces a stronger immune response, and shifts bioenergetic metabolism more extensively than the S-type. This study is the first to report differential immune responses and metabolic reprogramming after Mmuc infection and might provide a fundamental basis for additional studies on Mmuc pathogenesis.


Assuntos
Mycobacteriaceae , Infecções por Mycobacterium não Tuberculosas , Infecções por Mycobacterium , Animais , Citocinas/metabolismo , Imunidade , Macrófagos/metabolismo , Camundongos , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia
12.
Front Microbiol ; 12: 695024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447358

RESUMO

Nontuberculous mycobacterial pulmonary infection is often aggravated due to antibiotic resistance issues. There is a need for development of new drugs inducing both host immune responses and antimicrobial activities. This study shows that the rufomycins 4/5/6/7 (Rufomycin 4-7), which targets ClpC1 as a subunit of caseinolytic protein complex ClpC1/ClpP1/ClpP2 of mycobacteria, exhibits a dual effect in host innate defense and in vivo antimicrobial activities against a rough morphotype of Mycobacterium abscessus (Mabs-R), a clinically severe morphotype that causes hyperinflammation. Rufomycin 4-7 treatment showed antimicrobial effects against Mabs pulmonary infection in vivo and in macrophages. In addition, Rufomycin 4-7 significantly decreased inflammation, but enhanced the autophagy/lysosomal genes through upregulation of the nuclear translocation of transcription factor EB (TFEB). Furthermore, Rufomycin 4-7 treatment effectively inhibited mitochondrial damage and oxidative stresses in macrophages during Mabs-R infection. Collectively, Rufomycin 4-7-mediated dual effects inducing both antimicrobial activities and host immune defense might confer an advantage to treatment against Mabs-R infection.

13.
Chest ; 160(1): e91, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34246402
14.
Commun Biol ; 4(1): 548, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972668

RESUMO

Mitochondrial function and innate immunity are intimately linked; however, the mechanisms how mitochondrion-shaping proteins regulate innate host defense remains largely unknown. Herein we show that mitofusin-2 (MFN2), a mitochondrial fusion protein, promotes innate host defense through the maintenance of aerobic glycolysis and xenophagy via hypoxia-inducible factor (HIF)-1α during intracellular bacterial infection. Myeloid-specific MFN2 deficiency in mice impaired the antimicrobial and inflammatory responses against mycobacterial and listerial infection. Mechanistically, MFN2 was required for the enhancement of inflammatory signaling through optimal induction of aerobic glycolysis via HIF-1α, which is activated by mitochondrial respiratory chain complex I and reactive oxygen species, in macrophages. MFN2 did not impact mitophagy during infection; however, it promoted xenophagy activation through HIF-1α. In addition, MFN2 interacted with the late endosomal protein Rab7, to facilitate xenophagy during mycobacterial infection. Our findings reveal the mechanistic regulations by which MFN2 tailors the innate host defense through coordinated control of immunometabolism and xenophagy via HIF-1α during bacterial infection.


Assuntos
Infecções Bacterianas/imunologia , GTP Fosfo-Hidrolases/fisiologia , Glicólise , Imunidade Inata/imunologia , Macroautofagia , Macrófagos/imunologia , Mitocôndrias/imunologia , Animais , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
15.
J Infect Public Health ; 14(4): 508-513, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33743373

RESUMO

Mycobacterium tuberculosis, the bacterium that causes tuberculosis, has long been an unpleasant neighbour of humans. Following transmission of the bacterium from patients with active infection, new hosts do not immediately develop symptoms, as M. tuberculosis initially remains quiescent. However, it is eventually triggered, leading to the infection of other individuals. Humans are the exclusive host, and the rapid proliferation of the human population worldwide along with increasing globalisation have contributed to the pathogen's persistence, as have the survival strategies employed by M. tuberculosis, especially its resistance to several antimicrobials. Defeating this enemy will require novel approaches.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos
16.
Chest ; 159(2): 517-523, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32712225

RESUMO

BACKGROUND: Clofazimine has been regarded as a promising agent for the treatment of nontuberculous mycobacteria pulmonary disease (NTM-PD). However, its overall effectiveness in vitro and in the clinic remains unknown. RESEARCH QUESTION: What is the minimal inhibitory concentration (MIC) of clofazimine in clinical isolates and the association between MICs and treatment outcome? STUDY DESIGN AND METHODS: MICs for clofazimine were measured in clinical isolates from NTM-PD patients who participated in a prospective study at Seoul National University Hospital. The MIC was determined by using the broth microdilution concentration method. Correlation between MIC and conversion to negative of sputum culture with clofazimine was determined. RESULTS: Of a total 189 isolates, 133 strains were Mycobacterium avium complex (MAC) and 40 strains were M abscessus. Although the clofazimine MICs for MAC ranged from 0.031 mg/L to 8 mg/L, the values obtained for M abscessus ranged from 0.031 mg/L to 16 mg/L. Of 20 patients who were treated with a regimen including clofazimine, eight achieved negative conversion of sputum culture. All patients with isolates exhibiting clofazimine MIC values ≤ 0.25 mg/L achieved culture conversion. The likelihood of culture conversion in patients with MIC value ≤ 0.25 mg/L was much higher than that of patients with MIC value > 0.5 mg/L (OR, 39.3; P = .021). INTERPRETATION: The MICs of clofazimine varied widely in clinical isolates from patients with NTM-PD. Negative conversion of sputum culture with clofazimine use was associated with a lower MIC value. Clofazimine use could be considered in patients with NTM-PD when the MIC value is ≤ 0.25 mg/L. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01616745; URL: www.clinicaltrials.gov.


Assuntos
Clofazimina/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Micobactérias não Tuberculosas/efeitos dos fármacos , Idoso , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Micobactérias não Tuberculosas/isolamento & purificação , Estudos Prospectivos , República da Coreia
17.
Virulence ; 11(1): 1225-1239, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835604

RESUMO

The global incidence of Mycobacterium abscessus (Mabc), a rapidly growing nontuberculous mycobacterial strain that causes treatment-refractory pulmonary diseases, is increasing. Despite this, the host factors that allow for protection against infection are largely unknown. In this study, we found that sirtuin 3 (SIRT3), a mitochondrial protein deacetylase, plays a critical role in host defense against Mabc infection. Mabc decreased SIRT3 and upregulated mitochondrial oxidative stress in macrophages. SIRT3 deficiency led to increased bacterial loads, histopathological, and mitochondrial damage, and pathological inflammation during Mabc infection. Administration of scavengers of mitochondrial reactive oxygen species significantly decreased the in vivo Mabc burden and excessive inflammation, and induced SIRT3 expression in infected lungs. Notably, SIRT3 agonist (resveratrol) significantly decreased Mabc growth and attenuated inflammation in mice and zebrafishes, indicating the key role for SIRT3 in metazoan host defense. Collectively, these data strongly suggest that SIRT3 is a host-directed therapeutic target against Mabc infection by controlling mitochondrial homeostasis.


Assuntos
Homeostase , Interações Hospedeiro-Patógeno , Mitocôndrias/fisiologia , Infecções por Mycobacterium não Tuberculosas/prevenção & controle , Sirtuína 3/genética , Animais , Regulação da Expressão Gênica , Macrófagos/microbiologia , Macrófagos/fisiologia , Masculino , Camundongos , Mycobacterium abscessus/crescimento & desenvolvimento , Mycobacterium abscessus/patogenicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sirtuína 3/metabolismo , Peixe-Zebra/microbiologia
18.
Tuberc Respir Dis (Seoul) ; 83(2): 141-146, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32185919

RESUMO

BACKGROUND: The burden of nontuberculous mycobacterial (NTM) pulmonary disease (PD) is increasing globally. To understand the treatment outcomes and prognosis of NTM-PD, a unified registry is needed. In this project, we aim to construct a multicenter prospective observational cohort with NTM-PD in South Korea (NTM-KOREA). METHODS: The primary objective of this study is to analyze treatment outcomes according to the species. In addition, recurrence rate, adverse events, the impact of each drug on treatment outcomes as well as the impact of characteristics of mycobacteriology will be analyzed. The inclusion criteria for the study are as follows: fulfilling the criteria for NTM-PD having one of the following etiologic organisms: Mycobacterium avium complex, M. abscessus subspecies abscessus, M. abscessus subspecies massiliense, or M. kansasii; receiving the first treatment for NTM-PD after enrollment; age >20 years; and consenting to participate in the study. Seven institutions will participate in patient enrollment and about 500 patients are expected to be enrolled. Participants will be recruited from 1 March 2020 until 19 March 2024 and will be observed through 19 March 2029. During the follow-up period, participants' clinical course will be tracked and their clinical data as well as NTM isolates will be collected. CONCLUSION: NTM-KOREA will be the first nationwide observational cohort for NTM-PD in South Korea. It will provide the information to optimize treatment modalities and will contribute to deeper understanding of the treatment outcomes and long-term prognosis of patients with NTM-PD in South Korea.

19.
Pathog Dis ; 75(8)2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29044406

RESUMO

Autophagy is known to be a vital homeostatic defense process that controls mycobacterial infection. However, the relationship between autophagy response and the virulence of Mycobacterium abscessus strain UC22 has not been reported. Here, we demonstrate that M. abscessus induces autophagy and inhibits autophagy flux in murine macrophages. Further, the rough variant of M. abscessus, UC22 that is a highly virulent clinical isolate, significantly inhibited autophagic flux than the smooth variant of M. abscessus ATCC 19977. In addition, it was noticed that the intracellular survival of UC22 is significantly enhanced by blocking the autophagosome-lysosome fusion in macrophages compared to the smooth variant. However, Mycobacterium smegmatis did not block autophagy flux in murine macrophages. Besides, we confirmed that the lipid components of M. abscessus UC22 play a role in autophagosome formation. These data suggest that the virulent M. abscessus might be able to survive and grow within autophagosomes by preventing the autophagosome-lysosome fusion and their clearance from the cells.


Assuntos
Autofagia , Macrófagos/microbiologia , Mycobacterium abscessus/fisiologia , Animais , Feminino , Lipídeos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7
20.
Cell Death Dis ; 8(8): e3012, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837151

RESUMO

Mycobacterium abscessus (MAB) is a species of nontuberculous mycobacteria (NTM) and a major causative pathogen of pulmonary diseases especially in patients with cystic fibrosis. MAB infection is notoriously difficult to treat because of its intrinsic or inducible resistance to most antibiotics. The rough (R) morphotype of MAB, lacking cell surface glycopeptidolipids (GPLs), is associated with more severe and persistent infection than the smooth (S) type; however, the mechanisms underlying the R type's virulence and the relation with GPLs remain unclear. In this study, we found that R-type MAB is much more proapoptotic than the S type, as a result of GPL-mediated inhibition of macrophage apoptosis. Polar GPLs inhibited an apoptotic response (induced by proapoptotic stimuli) by suppressing ROS production and the cytochrome c release and by preserving mitochondrial transmembrane potential. Furthermore, GPLs were found to be targeted to mitochondria and interacted with cyclophilin D; their acetylation was essential for this interaction. Finally, GPLs inhibited the intracellular growth and bacterial spreading of R-type MAB among macrophages via apoptosis inhibition. These findings suggest that GPLs limit MAB virulence by inhibiting apoptosis and the spread of bacteria and therefore provide a novel insight into the mechanism underlying virulence of MAB.


Assuntos
Ciclofilinas/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mycobacterium abscessus/patogenicidade , Micobactérias não Tuberculosas/patogenicidade , Apoptose , Peptidil-Prolil Isomerase F , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...