Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(36): 22214-22224, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848054

RESUMO

Increased neural stem cell (NSC) quiescence is a major determinant of age-related regenerative decline in the adult hippocampus. However, a coextensive model has been proposed in which division-coupled conversion of NSCs into differentiated astrocytes restrict the stem cell pool with age. Here we report that age-related loss of the posttranslational modification, O-linked ß-N-acetylglucosamine (O-GlcNAc), in NSCs promotes a glial fate switch. We detect an age-dependent decrease in NSC O-GlcNAc levels coincident with decreased neurogenesis and increased gliogenesis in the mature hippocampus. Mimicking an age-related loss of NSC O-GlcNAcylation in young mice reduces neurogenesis, increases astrocyte differentiation, and impairs associated cognitive function. Using RNA-sequencing of primary NSCs following decreased O-GlcNAcylation, we detected changes in the STAT3 signaling pathway indicative of glial differentiation. Moreover, using O-GlcNAc-specific mass spectrometry analysis of the aging hippocampus, together with an in vitro site-directed mutagenesis approach, we identify loss of STAT3 O-GlcNAc at Threonine 717 as a driver of astrocyte differentiation. Our data identify the posttranslational modification, O-GlcNAc, as a key molecular regulator of regenerative decline underlying an age-related NSC fate switch.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular/fisiologia , Glucosamina/análogos & derivados , Células-Tronco Neurais/fisiologia , Neuroglia/fisiologia , Fator de Transcrição STAT3/metabolismo , Animais , Proliferação de Células , Biologia Computacional , Regulação da Expressão Gênica , Glucosamina/metabolismo , Hipocampo/citologia , Camundongos , Neurogênese , Fator de Transcrição STAT3/genética , Análise de Sequência de RNA
2.
J Appl Lab Med ; 5(2): 332-341, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32445387

RESUMO

BACKGROUND: Point-of-care (POC) testing is an integral diagnostic component in clinical settings like the emergency department (ED). However, most POC testing devices are unable to detect endogenous interferents such as hemolysis, which typically occurs during sample collection and handling and can falsely increase measured potassium (pseudohyperkalemia), a phenomenon we hypothesized may significantly impact patient care. METHODS: In this retrospective study, we evaluated 100 unique admissions to the Oregon Health & Science University ED, presenting with elevated potassium measured at the POC. To evaluate whether in vitro hemolysis had occurred, POC test results were compared to repeat testing of the original specimen, or other specimens tested within 90 minutes in the Core laboratory. Review of associated Electronic Health Records determined whether elevated potassium initially measured using the POC analyzer was real, or due to in vitro hemolysis or contamination, and whether pseudohyperkalemia impacted patient management or care. RESULTS: Of the 100 admissions with hyperkalemia measured using a POC analyzer, 40% were found to have pseudohyperkalemia due to hemolysis or contamination. Of these 40 patients, 6 experienced repeated testing, and an additional 5 were noted to have altered patient management, specifically due to pseudohyperkalemia. CONCLUSIONS: This study demonstrates the incidence of in vitro hemolysis, which is unknown to the POC operator, is high in patients who show an elevated potassium as measured at the POC. Furthermore, in vitro hemolysis can significantly impact patient management, suggesting that minimizing the incidence of unrecognized hemolysis will benefit hospital efficiency, decrease waste, and improve patient care.


Assuntos
Análise Química do Sangue/normas , Hemólise , Assistência ao Paciente/normas , Sistemas Automatizados de Assistência Junto ao Leito/normas , Testes Imediatos/normas , Análise Química do Sangue/métodos , Coleta de Amostras Sanguíneas/normas , Feminino , Humanos , Hiperpotassemia/sangue , Hiperpotassemia/diagnóstico , Hiperpotassemia/etiologia , Masculino , Assistência ao Paciente/métodos , Potássio/sangue , Estudos Retrospectivos
3.
Shock ; 53(1): 71-77, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30672882

RESUMO

Maintenance of the commensal bacteria that comprise the gut microbiome is essential to both gut and systemic health. Traumatic injury, such as burn, elicits a number of changes in the gut, including a shift in the composition of the microbiome (dysbiosis), increased gut leakiness, and bacterial translocation into the lymphatic system and bloodstream. These effects are believed to contribute to devastating secondary complications following burn, including pneumonia, acute respiratory distress syndrome, multi-organ failure, and septic shock. Clinical studies demonstrate that advanced age causes a significant increase in mortality following burn, but the role of the gut in this age-dependent susceptibility has not been investigated. In this study, we combined our well-established murine model of scald burn injury with bacterial 16S-rRNA gene sequencing to investigate how burn injury affects the fecal microbiome in aged versus young mice. Of our treatment groups, the most substantial shift in gut microbial populations was observed in aged mice that underwent burn injury. We then profiled antimicrobial peptides (AMPs) in the ileum, and found that burn injury stimulated a 20-fold rise in levels of regenerating islet-derived protein 3 gamma (Reg3γ), a 16-fold rise in regenerating islet-derived protein 3 beta (Reg3ß), and an 8-fold rise in Cathelicidin-related antimicrobial peptide (Cramp) in young, but not aged mice. Advanced age alone elicited 5-fold higher levels of alpha defensin-related sequence1 (Defa-rs1) in the ileum, but this increase was lost following burn. Comparison of bacterial genera abundance and AMP expression across treatment groups revealed distinct correlation patterns between AMPs and individual genera. Our results reveal that burn injury drives microbiome dysbiosis and altered AMP expression in an age-dependent fashion, and highlight potential mechanistic targets contributing to the increased morbidity and mortality observed in elderly burn patients.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , RNA Ribossômico 16S/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Open Access Emerg Med ; 11: 291-296, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814781

RESUMO

BACKGROUND: Point of Care (POC) diagnostics are an essential component of modern medicine and are employed in a variety of clinical disciplines to improve patient outcomes and provider efficiency. Despite these benefits, there are aspects of POC testing which may still hold room for improvement. In the present study, a group of healthcare professionals familiar with different facets of blood-based POC testing provided their perspectives on the benefits and challenges of POC testing within their respective fields. MATERIALS AND METHODS: The study was conducted from April to June 2019, in Colorado, United States of America. Five healthcare professionals, each working in a distinct field (anesthesiology, nursing, emergency medicine, trauma surgery, and POC management) were interviewed. Results from each of the interviews were transcribed as qualitative perspectives on POC diagnostics. DISCUSSION: The general consensus among participants in this study is that POC testing is tremendously beneficial, providing rapid test results, increased access to diagnostics, and improvements in hospital efficiency. However, significant challenges remain in blood-based POC diagnostics, particularly in maintaining sample quality, due to the fact that devices used for sample acquisition and handling are not designed for POC. This raises the possibility for interferents like hemolysis to occur, which may alter diagnostic results. Errors in POC diagnostics, whether due to sample, operator, or instrument error, may cause providers to lose confidence in the test. This lack of confidence can lead to duplicate testing and delayed patient diagnoses. CONCLUSION: The perspectives presented in this study suggest there is a significant need for improvement in the pre-analytical phase of POC testing, and that current practice employs specimen collection technology not designed for POC. Therefore, one hypothesis is that the introduction of a collection device designed specifically for POC could reduce pre-analytical errors, standardize sample quality, improve efficiency, and further benefit patient care.

5.
Curr Biol ; 29(20): 3359-3369.e4, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31588002

RESUMO

Mounting evidence in animal models indicates potential for rejuvenation of cellular and cognitive functions in the aging brain. However, the ability to utilize this potential is predicated on identifying molecular targets that reverse the effects of aging in vulnerable regions of the brain, such as the hippocampus. The dynamic post-translational modification O-linked N-Acetylglucosamine (O-GlcNAc) has emerged as an attractive target for regulating aging-specific synaptic alterations as well as neurodegeneration. While speculation exists about the role of O-GlcNAc in neurodegenerative conditions, such as Alzheimer's disease, its role in physiological brain aging remains largely unexplored. Here, we report that countering age-related decreased O-GlcNAc transferase (OGT) expression and O-GlcNAcylation ameliorates cognitive impairments in aged mice. Mimicking an aged condition in young adults by abrogating OGT, using a temporally controlled neuron-specific conditional knockout mouse model, recapitulated cellular and cognitive features of brain aging. Conversely, overexpressing OGT in mature hippocampal neurons using a viral-mediated approach enhanced associative fear memory in young adult mice. Excitingly, in aged mice overexpressing neuronal OGT in the aged hippocampus rescued in part age-related impairments in spatial learning and memory as well as associative fear memory. Our data identify O-GlcNAcylaton as a key molecular mediator promoting cognitive rejuvenation.


Assuntos
Acetilglucosamina/metabolismo , Envelhecimento/fisiologia , Cognição/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Acilação , Animais , Masculino , Camundongos , Camundongos Knockout
6.
Cell Rep ; 22(8): 1974-1981, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466726

RESUMO

Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes the production of 5-hydroxymethylcytosine (5hmC), rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation.


Assuntos
Envelhecimento/patologia , Encéfalo/fisiopatologia , Cognição , Proteínas de Ligação a DNA/metabolismo , Regeneração Nervosa , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Giro Denteado/metabolismo , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Dioxigenases , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Células-Tronco Neurais/metabolismo , Neurogênese , Parabiose
7.
Annu Rev Neurosci ; 40: 251-272, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28441118

RESUMO

The past two decades have seen remarkable progress in our understanding of the multifactorial drivers of hippocampal aging and cognitive decline. Recent findings have also raised the possibility of functional rejuvenation in the aged hippocampus. In this review, we aim to synthesize the mechanisms that drive hippocampal aging and evaluate critically the potential for rejuvenation. We discuss the functional changes in synaptic plasticity and regenerative potential of the aged hippocampus, followed by mechanisms of microglia aging, and assess the cross talk between these proaging processes. We then examine proyouth interventions that demonstrate significant promise in reversing age-related impairments in the hippocampus and, finally, attempt to look ahead toward novel therapeutics for brain aging.


Assuntos
Envelhecimento/fisiologia , Hipocampo/fisiologia , Rejuvenescimento/fisiologia , Animais , Humanos , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia
8.
Nat Med ; 21(8): 932-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147761

RESUMO

Aging drives cognitive and regenerative impairments in the adult brain, increasing susceptibility to neurodegenerative disorders in healthy individuals. Experiments using heterochronic parabiosis, in which the circulatory systems of young and old animals are joined, indicate that circulating pro-aging factors in old blood drive aging phenotypes in the brain. Here we identify ß2-microglobulin (B2M), a component of major histocompatibility complex class 1 (MHC I) molecules, as a circulating factor that negatively regulates cognitive and regenerative function in the adult hippocampus in an age-dependent manner. B2M is elevated in the blood of aging humans and mice, and it is increased within the hippocampus of aged mice and young heterochronic parabionts. Exogenous B2M injected systemically, or locally in the hippocampus, impairs hippocampal-dependent cognitive function and neurogenesis in young mice. The negative effects of B2M and heterochronic parabiosis are, in part, mitigated in the hippocampus of young transporter associated with antigen processing 1 (Tap1)-deficient mice with reduced cell surface expression of MHC I. The absence of endogenous B2M expression abrogates age-related cognitive decline and enhances neurogenesis in aged mice. Our data indicate that systemic B2M accumulation in aging blood promotes age-related cognitive dysfunction and impairs neurogenesis, in part via MHC I, suggesting that B2M may be targeted therapeutically in old age.


Assuntos
Envelhecimento , Cognição , Neurogênese , Microglobulina beta-2/fisiologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Humanos , Complexo Principal de Histocompatibilidade/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
9.
Nat Med ; 20(6): 659-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24793238

RESUMO

As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts--in which circulatory systems of young and aged animals are connected--identified synaptic plasticity-related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function.


Assuntos
Envelhecimento/fisiologia , Transfusão de Sangue/métodos , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/terapia , Plasticidade Neuronal/fisiologia , Fatores Etários , Envelhecimento/patologia , Animais , Western Blotting , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Primers do DNA/genética , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Parabiose/métodos , Reação em Cadeia da Polimerase
10.
Biophys J ; 102(3): 552-60, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22325278

RESUMO

All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their use to obtain dynamical models for this class of systems needs to be independently validated. The four-way junction (4WJ), or Holliday junction, is a dynamic DNA structure involved in central cellular processes of homologous replication and double strand break repair. Two conformations are observed in solution: a planar open-X form (OPN) with a mobile center and four duplex arms, and an immobile stacked-X (STX) form with two continuous strands and two crossover strands, stabilized by high salt conditions. To characterize the accuracy of MD modeling on 4WJ, we report a set of explicit solvent MD simulations of ∼100 ns on the repeat sequence d(CCGGTACCGG)(4) starting from the STX structure (PDB code 1dcw), and an OPN structure built for the same sequence. All 4WJ MD simulations converged to a stable STX structure in close accord with the crystal structure. Our MD beginning in the OPN form converts to the STX form spontaneously at both high and low salt conditions, providing a model for the conformational transition. Thus, these simulations provide a successful account of the dynamical structure of the STX form of d(CCGGTACCGG)(4) in solution, and provide new, to our knowledge, information on the conformational stability of the junction and distribution of counterions in the junction interior.


Assuntos
DNA Cruciforme/química , DNA Cruciforme/genética , Sequências Repetidas Invertidas , Simulação de Dinâmica Molecular , Sequência de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...