Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mon Not R Astron Soc ; 480(2): 1666-1675, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30581240

RESUMO

Using high-resolution simulations from the FIRE-2 (Feedback In Realistic Environments) project, we study the effects of discreteness in stellar feedback processes on the evolution of galaxies and the properties of the interstellar medium (ISM). We specifically consider the discretization of supernovae (SNe), including hypernovae (HNe), and sampling the initial mass function (IMF). We study these processes in cosmological simulations of dwarf galaxies with z = 0 stellar masses M * ~ 104-3 × 106 M⊙ (halo masses ~109-1010 M⊙). We show that the discrete nature of individual SNe (as opposed to a model in which their energy/momentum deposition is continuous overtime, similar to stellar winds) is crucial in generating a reasonable ISM structure and galactic winds and in regulating dwarf stellar masses. However, once SNe are discretized, accounting for the effects of IMF sampling on continuous mechanisms such as radiative feedback and stellar mass-loss (as opposed to adopting IMF-averaged rates) has weak effects on galaxy-scale properties. We also consider the effects of rare HNe events with energies ~1053 erg. The effects of HNe are similar to the effects of clustered explosions of SNe - which are already captured in our default simulation setup - and do not quench star formation (provided that the HNe do not dominate the total SNe energy budget), which suggests that HNe yield products should be observable in ultra-faint dwarfs today.

2.
Mon Not R Astron Soc ; 477(4): 4491-4498, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-30598559

RESUMO

In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M ★ ~ 105.5-8 M☉). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ~0.52 ± 0.26 within 1 < R/R vir < 2 of the Milky Way and M31. This is in good agreement with current observations of the Local Volume and suggests that the majority of the passive field systems observed at these distances are quenched via environmental mechanisms. Beyond 2R vir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...