Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38635834

RESUMO

BACKGROUND: The anti-IgE monoclonal, omalizumab, is widely used for severe asthma. This study aimed to identify biomarkers that predict clinical improvement during one year of omalizumab treatment. METHODS: 1-year, open-label, Study of Mechanisms of action of Omalizumab in Severe Asthma (SoMOSA) involving 216 severe (GINA step 4/5) uncontrolled atopic asthmatics (≥2 severe exacerbations in previous year) on high-dose inhaled corticosteroids, long-acting ß-agonists, ± mOCS. It had two phases: 0-16 weeks, to assess early clinical improvement by Global Evaluation of Therapeutic Effectiveness (GETE), and 16-52 weeks, to assess late responses by ≥50% reduction in exacerbations or dose of maintenance oral corticosteroids (mOCS). All participants provided samples (exhaled breath, blood, sputum, urine) before and after 16 weeks of omalizumab treatment. RESULTS: 191 patients completed phase 1; 63% had early improvement. Of 173 who completed phase 2, 69% had reduced exacerbations by ≥50%, while 57% (37/65) on mOCS reduced their dose by ≥50%. The primary outcome 2, 3-dinor-11-ß-PGF2α, GETE and standard clinical biomarkers (blood and sputum eosinophils, exhaled nitric oxide, serum IgE) did not predict either clinical response. Five breathomics (GC-MS) and 5 plasma lipid biomarkers strongly predicted the ≥50% reduction in exacerbations (receiver operating characteristic area under the curve (AUC): 0.780 and 0.922, respectively) and early responses (AUC:0.835 and 0.949, respectively). In independent cohorts, the GC-MS biomarkers differentiated between severe and mild asthma. Conclusions This is the first discovery of omics biomarkers that predict improvement to a biologic for asthma. Their prospective validation and development for clinical use is justified. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
EBioMedicine ; 102: 105025, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458111

RESUMO

BACKGROUND: Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS: We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS: The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION: This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).


Assuntos
Asma , MicroRNAs , Criança , Humanos , Estudos Transversais , Pulmão/metabolismo , MicroRNAs/metabolismo , Metabolômica
4.
Respir Res ; 25(1): 86, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336805

RESUMO

BACKGROUND: Bronchopulmonary Dysplasia (BPD) in infants born prematurely is a risk factor for chronic airway obstruction later in life. The distribution of T cell subtypes in the large airways is largely unknown. OBJECTIVE: To characterize cellular and T cell profiles in the large airways of young adults with a history of BPD. METHODS: Forty-three young adults born prematurely (preterm (n = 20), BPD (n = 23)) and 45 full-term-born (asthma (n = 23), healthy (n = 22)) underwent lung function measurements, and bronchoscopy with large airway bronchial wash (BW). T-cells subsets in BW were analyzed by immunocytochemistry. RESULTS: The proportions of both lymphocytes and CD8 + T cells in BW were significantly higher in BPD (median, 6.6%, and 78.0%) when compared with asthma (3.4% and 67.8%, p = 0.002 and p = 0.040) and healthy (3.8% and 40%, p < 0.001 and p < 0.001). In all adults born prematurely (preterm and BPD), lymphocyte proportion correlated negatively with forced vital capacity (r= -0.324, p = 0.036) and CD8 + T cells correlated with forced expiratory volume in one second, FEV1 (r=-0.448, p = 0.048). Correlation-based network analysis revealed that lung function cluster and BPD-birth cluster were associated with lymphocytes and/or CD4 + and CD8 + T cells. Multivariate regression analysis showed that lymphocyte proportions and BPD severity qualified as independent factors associated with FEV1. CONCLUSIONS: The increased cytotoxic T cells in the large airways in young adults with former BPD, suggest a similar T-cell subset pattern as in the small airways, resembling features of COPD. Our findings strengthen the hypothesis that mechanisms involving adaptive and innate immune responses are involved in the development of airway disease due to preterm birth.


Assuntos
Asma , Displasia Broncopulmonar , Nascimento Prematuro , Doença Pulmonar Obstrutiva Crônica , Lactente , Feminino , Adulto Jovem , Humanos , Recém-Nascido , Displasia Broncopulmonar/diagnóstico , Volume Expiratório Forçado/fisiologia , Testes de Função Respiratória , Asma/complicações , Doença Pulmonar Obstrutiva Crônica/complicações
5.
J Nutr ; 154(2): 395-402, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38081585

RESUMO

BACKGROUND: Oxylipins are products derived from polyunsaturated fatty acids (PUFAs) that play a role in cardiovascular disease and aging. Fish oil-derived n-3 PUFAs promote the formation of anti-inflammatory and vasodilatory oxylipins; however, there are little data on oxylipins derived from α-linolenic acid (C18:3n-3), the primary plant-derived n-3 PUFA. Walnuts are a source of C18:3n-3. OBJECTIVES: To investigate the effect on serum oxylipins of a diet enriched with walnuts at 15% energy (30-60 g/d; 2.6-5.2 g C18:3n-3/d) for 2 y compared to a control diet (abstention from walnuts) in healthy older males and females (63-79 y). METHODS: The red blood cell proportion of α-linolenic acid was determined by gas chromatography as a measure of compliance. Ultra-performance liquid chromatography-tandem mass spectrometry was used to measure serum concentrations of 53 oxylipins in participants randomly assigned to receive the walnut diet (n = 64) or the control diet (n = 51). Two-year concentration changes (final minus baseline) were log-transformed (base log-10) and standardized (mean-centered and divided by the standard deviation of each variable). Volcano plots were then generated (fold change ≥1.5; false discovery rate ≤0.1). For each oxylipin delta surviving multiple testing, we further assessed between-intervention group differences by analysis of covariance adjusting for age, sex, BMI, and the baseline concentration of the oxylipin. RESULTS: The 2-y change in red blood cell C18:3n-3 in the walnut group was significantly higher than that in the control group (P < 0.001). Compared to the control diet, the walnut diet resulted in statistically significantly greater increases in 3 C18:3n-3-derived oxylipins (9-HOTrE, 13-HOTrE, and 12,13-EpODE) and in the C20:5n-3 derived 14,15-diHETE, and greater reductions of the C20:4n-6-derived 5-HETE, 19-HETE, and 5,6-diHETrE. CONCLUSIONS: Long-term walnut consumption changes the serum oxylipin profile in healthy older persons. Our results add novel mechanistic evidence on the cardioprotective effects of walnuts. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT01634841.


Assuntos
Ácidos Graxos Ômega-3 , Juglans , Masculino , Feminino , Humanos , Idoso , Idoso de 80 Anos ou mais , Oxilipinas , Ácido alfa-Linolênico , Dieta , Ácidos Graxos Insaturados , Ácidos Graxos Ômega-3/farmacologia
6.
Allergy ; 79(2): 404-418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014461

RESUMO

BACKGROUND: While dysregulated sphingolipid metabolism has been associated with risk of childhood asthma, the specific sphingolipid classes and/or mechanisms driving this relationship remain unclear. We aimed to understand the multifaceted role between sphingolipids and other established asthma risk factors that complicate this relationship. METHODS: We performed targeted LC-MS/MS-based quantification of 77 sphingolipids in plasma from 997 children aged 6 years from two independent cohorts (VDAART and COPSAC2010 ). We examined associations of circulatory sphingolipids with childhood asthma, lung function, and three asthma risk factors: functional SNPs in ORMDL3, low vitamin D levels, and reduced gut microbial maturity. Given racial differences between these cohorts, association analyses were performed separately and then meta-analyzed together. RESULTS: We observed elevations in circulatory sphingolipids with asthma phenotypes and risk factors; however, there were differential associations of sphingolipid classes with clinical outcomes and/or risk factors. While elevations from metabolites involved in ceramide recycling and catabolic pathways were associated with asthma and worse lung function [meta p-value range: 1.863E-04 to 2.24E-3], increased ceramide levels were associated with asthma risk factors [meta p-value range: 7.75E-5 to .013], but not asthma. Further investigation identified that some ceramides acted as mediators while some interacted with risk factors in the associations with asthma outcomes. CONCLUSION: This study demonstrates the differential role that sphingolipid subclasses may play in asthma and its risk factors. While overall elevations in sphingolipids appeared to be deleterious overall; elevations in ceramides were uniquely associated with increases in asthma risk factors only; while elevations in asthma phenotypes were associated with recycling sphingolipids. Modification of asthma risk factors may play an important role in regulating sphingolipid homeostasis via ceramides to affect asthma. Further function work may validate the observed associations.


Assuntos
Asma , Esfingolipídeos , Criança , Humanos , Esfingolipídeos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ceramidas/metabolismo , Asma/etiologia , Asma/genética , Fatores de Risco
7.
Prostaglandins Other Lipid Mediat ; 170: 106789, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37879396

RESUMO

Urinary eicosanoid concentrations reflect inflammatory processes in multiple diseases and have been used as biomarkers of disease as well as suggested for patient stratification in precision medicine. However, implementation of urinary eicosanoid profiling in large-scale analyses is restricted due to sample preparation limits. Here we demonstrate a single solid-phase extraction of 300 µL urine in 96-well-format for prostaglandins, thromboxanes, isoprostanes, cysteinyl-leukotriene E4 and the linoleic acid-derived dihydroxy-octadecenoic acids (9,10- and 12,13-DiHOME). A simultaneous screening protocol was also developed for cortisol/cortisone and 7 exogenous steroids as well as 3 cyclooxygenase inhibitors. Satisfactory performance for quantification of eicosanoids with an appropriate internal standard was demonstrated for intra-plate analyses (CV = 8.5-15.1%) as well as for inter-plate (n = 35) from multiple studies (CV = 22.1-34.9%). Storage stability was evaluated at - 20 °C, and polar tetranors evidenced a 50% decrease after 5 months, while the remaining eicosanoids evidenced no significant degradation. All eicosanoids were stable over 3.5-years in urine stored at - 80 °C. This method will facilitate the implementation of urinary eicosanoid quantification in large-scale screening.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Eicosanoides/metabolismo
8.
Eur Respir Rev ; 32(170)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37914192

RESUMO

Asthma is the most common chronic disease within the paediatric population. Although it is multifactorial, its onset may be linked to early-life exposures with subsequent impact on immune system development. Microbial and dietary metabolic products have been implicated in the development and exacerbation of paediatric asthma. Linoleic acid is the most common omega-6 polyunsaturated fatty acid in the Western diet. In this review, we summarise the literature regarding the involvement of linoleic acid in the development of and its impact on existing paediatric asthma. First, we summarise the existing knowledge surrounding the relationship between human microbial metabolism and allergic diseases in children. Next, we examine cellular or animal model-based mechanistic studies that investigated the impact of dietary- and microbial-derived linoleic acid metabolites on asthma. Finally, we review the literature investigating the impact of linoleic acid metabolites on the development and exacerbation of childhood asthma. While there is conflicting evidence, there is growing support for a role of linoleic acid in the onset and pathophysiology of asthma. We recommend that additional cellular, animal, and longitudinal studies are performed that target linoleic acid and its metabolites.


Assuntos
Asma , Ácido Linoleico , Criança , Animais , Humanos , Asma/tratamento farmacológico , Asma/metabolismo
9.
ERJ Open Res ; 9(5)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37868143

RESUMO

Rationale: Patients with severe asthma are dependent upon treatment with high doses of inhaled corticosteroids (ICS) and often also oral corticosteroids (OCS). The extent of endogenous androgenic anabolic steroid (EAAS) suppression in asthma has not previously been described in detail. The objective of the present study was to measure urinary concentrations of EAAS in relation to exogenous corticosteroid exposure. Methods: Urine collected at baseline in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease outcomes) study of severe adult asthmatics (SA, n=408) was analysed by quantitative mass spectrometry. Data were compared to that of mild-to-moderate asthmatics (MMA, n=70) and healthy subjects (HC, n=98) from the same study. Measurements and main results: The concentrations of urinary endogenous steroid metabolites were substantially lower in SA than in MMA or HC. These differences were more pronounced in SA patients with detectable urinary OCS metabolites. Their dehydroepiandrosterone sulfate (DHEA-S) concentrations were <5% of those in HC, and cortisol concentrations were below the detection limit in 75% of females and 82% of males. The concentrations of EAAS in OCS-positive patients, as well as patients on high-dose ICS only, were more suppressed in females than males (p<0.05). Low levels of DHEA were associated with features of more severe disease and were more prevalent in females (p<0.05). The association between low EAAS and corticosteroid treatment was replicated in 289 of the SA patients at follow-up after 12-18 months. Conclusion: The pronounced suppression of endogenous anabolic androgens in females might contribute to sex differences regarding the prevalence of severe asthma.

10.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37904959

RESUMO

Biological aging is a multifactorial process involving complex interactions of cellular and biochemical processes that is reflected in omic profiles. Using common clinical laboratory measures in ~30,000 individuals from the MGB-Biobank, we developed a robust, predictive biological aging phenotype, EMRAge, that balances clinical biomarkers with overall mortality risk and can be broadly recapitulated across EMRs. We then applied elastic-net regression to model EMRAge with DNA-methylation (DNAm) and multiple omics, generating DNAmEMRAge and OMICmAge, respectively. Both biomarkers demonstrated strong associations with chronic diseases and mortality that outperform current biomarkers across our discovery (MGB-ABC, n=3,451) and validation (TruDiagnostic, n=12,666) cohorts. Through the use of epigenetic biomarker proxies, OMICmAge has the unique advantage of expanding the predictive search space to include epigenomic, proteomic, metabolomic, and clinical data while distilling this in a measure with DNAm alone, providing opportunities to identify clinically-relevant interconnections central to the aging process.

11.
Nat Metab ; 5(10): 1747-1764, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37605057

RESUMO

T cell function and fate can be influenced by several metabolites: in some cases, acting through enzymatic inhibition of α-ketoglutarate-dependent dioxygenases, in others, through post-translational modification of lysines in important targets. We show here that glutarate, a product of amino acid catabolism, has the capacity to do both, and has potent effects on T cell function and differentiation. We found that glutarate exerts those effects both through α-ketoglutarate-dependent dioxygenase inhibition, and through direct regulation of T cell metabolism via glutarylation of the pyruvate dehydrogenase E2 subunit. Administration of diethyl glutarate, a cell-permeable form of glutarate, alters CD8+ T cell differentiation and increases cytotoxicity against target cells. In vivo administration of the compound is correlated with increased levels of both peripheral and intratumoural cytotoxic CD8+ T cells. These results demonstrate that glutarate is an important regulator of T cell metabolism and differentiation with a potential role in the improvement of T cell immunotherapy.


Assuntos
Fenômenos Bioquímicos , Linfócitos T CD8-Positivos , Linfócitos T CD8-Positivos/metabolismo , Glutaratos/metabolismo
12.
J Allergy Clin Immunol ; 152(6): 1646-1657.e11, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37558060

RESUMO

BACKGROUND: Gestational vitamin D deficiency is implicated in development of respiratory diseases in offspring, but the mechanism underlying this relationship is unknown. OBJECTIVE: We sought to study the link between gestational vitamin D exposure and childhood asthma phenotypes using maternal blood metabolomics profiling. METHODS: Untargeted blood metabolic profiles were acquired using liquid chromatography-mass spectrometry at 1 week postpartum from 672 women in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort and at pregnancy weeks 32 to 38 from 779 women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) mother-child cohort. In COPSAC2010, we employed multivariate models and pathway enrichment analysis to identify metabolites and pathways associated with gestational vitamin D blood levels and investigated their relationship with development of asthma phenotypes in early childhood. The findings were validated in VDAART and in cellular models. RESULTS: In COPSAC2010, higher vitamin D blood levels at 1 week postpartum were associated with distinct maternal metabolome perturbations with significant enrichment of the sphingomyelin pathway (P < .01). This vitamin D-related maternal metabolic profile at 1 week postpartum containing 46 metabolites was associated with decreased risk of recurrent wheeze (hazard ratio [HR] = 0.92 [95% CI 0.86-0.98], P = .01) and wheeze exacerbations (HR = 0.90 [95% CI 0.84-0.97], P = .01) at ages 0 to 3 years. The same metabolic profile was similarly associated with decreased risk of asthma/wheeze at ages 0 to 3 in VDAART (odds ratio = 0.92 [95% CI 0.85-0.99], P = .04). Human bronchial epithelial cells treated with high-dose vitamin D3 showed an increased cytoplasmic sphingolipid level (P < .01). CONCLUSIONS: This exploratory metabolomics study in 2 independent birth cohorts demonstrates that the beneficial effect of higher gestational vitamin D exposure on offspring respiratory health is characterized by specific maternal metabolic alterations during pregnancy, which involves the sphingomyelin pathway.


Assuntos
Asma , Vitamina D , Pré-Escolar , Feminino , Humanos , Gravidez , Metaboloma , Estudos Prospectivos , Sons Respiratórios , Esfingomielinas , Ensaios Clínicos como Assunto
13.
Sci Rep ; 13(1): 10461, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380711

RESUMO

Respiratory infections are a leading cause of morbidity and mortality in early life, and recurrent infections increase the risk of developing chronic diseases. The maternal environment during pregnancy can impact offspring health, but the factors leading to increased infection proneness have not been well characterized during this period. Steroids have been implicated in respiratory health outcomes and may similarly influence infection susceptibility. Our objective was to describe relationships between maternal steroid levels and offspring infection proneness. Using adjusted Poisson regression models, we evaluated associations between sixteen androgenic and corticosteroid metabolites during pregnancy and offspring respiratory infection incidence across two pre-birth cohorts (N = 774 in VDAART and N = 729 in COPSAC). Steroid metabolites were measured in plasma samples from pregnant mothers across all trimesters of pregnancy by ultrahigh-performance-liquid-chromatography/mass-spectrometry. We conducted further inquiry into associations of steroids with related respiratory outcomes: asthma and lung function spirometry. Higher plasma corticosteroid levels in the third trimester of pregnancy were associated with lower incidence of offspring respiratory infections (P = 4.45 × 10-7 to 0.002) and improved lung function metrics (P = 0.020-0.036). Elevated maternal androgens were generally associated with increased offspring respiratory infections and worse lung function, with some associations demonstrating nominal significance at P < 0.05, but these trends were inconsistent across individual androgens. Increased maternal plasma corticosteroid levels in the late second and third trimesters were associated with lower infections and better lung function in offspring, which may represent a potential avenue for intervention through corticosteroid supplementation in late pregnancy to reduce offspring respiratory infection susceptibility in early life.Clinical Trial Registry information: VDAART and COPSAC were originally conducted as clinical trials; VDAART: ClinicalTrials.gov identifier NCT00920621; COPSAC: ClinicalTrials.gov identifier NCT00798226.


Assuntos
Androgênios , Asma , Feminino , Humanos , Gravidez , Corticosteroides , Asma/epidemiologia , Benchmarking , Coorte de Nascimento
15.
J Invest Dermatol ; 143(10): 2039-2051.e10, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37061123

RESUMO

Impaired skin wound healing is a significant global health issue, especially among the elderly. Wound healing is a well-orchestrated process involving the sequential phases of inflammation, proliferation, and tissue remodeling. Although wound healing is a highly dynamic and energy-requiring process, the role of metabolism remains largely unexplored. By combining transcriptomics and metabolomics of human skin biopsy samples, we mapped the core bioenergetic and metabolic changes in normal acute as well as chronic wounds in elderly subjects. We found upregulation of glycolysis, the tricarboxylic acid cycle, glutaminolysis, and ß-oxidation in the later stages of acute wound healing and in chronic wounds. To ascertain the role of these metabolic pathways on wound healing, we targeted each pathway in a wound healing assay as well as in a human skin explant model using metabolic inhibitors and stimulants. Enhancement or inhibition of glycolysis and, to a lesser extent, glutaminolysis had a far greater impact on wound healing than similar manipulations of oxidative phosphorylation and fatty acid ß-oxidation. These findings increase the understanding of wound metabolism and identify glycolysis and glutaminolysis as potential targets for therapeutic intervention.


Assuntos
Pele , Cicatrização , Humanos , Idoso , Cicatrização/fisiologia , Pele/patologia , Redes e Vias Metabólicas , Glicólise , Metabolômica
16.
J Intern Med ; 294(4): 378-396, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37093654

RESUMO

Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. However, for complex diseases, precision medicine is associated with several challenges. There is a significant heterogeneity between patients of a specific disease-both with regards to symptoms and underlying causal mechanisms-and the number of underlying genetic and nongenetic risk factors is often high. Here, we summarize precision medicine approaches for complex diseases and highlight the current breakthroughs as well as the challenges. We conclude that genomic-based precision medicine has been used mainly for patients with highly penetrant monogenic disease forms, such as cardiomyopathies. However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.


Assuntos
Transtornos Mentais , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Genômica/métodos , Fatores de Risco
17.
Chemosphere ; 324: 138228, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36878362

RESUMO

Exposure to per- and polyfluoroalkyl substances (PFAS) through the environment can lead to harmful health outcomes and the development of disease. However, little is known about how PFAS impact underlying biology that contributes to these adverse health effects. The metabolome represents the end product of cellular processes and has been used previously to understand physiological changes that lead to disease. In this study, we investigated whether exposure to PFAS was associated with the global, untargeted metabolome. In a cohort of 459 pregnant mothers and 401 children, we quantified plasma concentrations of six individual PFAS- PFOA, PFOS, PFHXS, PFDEA, and PFNA- and performed plasma metabolomic profiling by UPLC-MS. In adjusted linear regression analysis, we found associations between plasma PFAS and perturbations in lipid and amino acid metabolites in both mothers and children. In mothers, metabolites of 19 lipid pathways and 8 amino acid pathways were significantly associated with PFAS exposure at an FDR<0.05 threshold; in children, metabolites of 28 lipid pathways and 10 amino acid pathways exhibited significant associations at FDR<0.05 with PFAS exposure. Our investigation found that metabolites of the Sphingomyelin, Lysophospholipid, Long Chain Polyunsaturated Fatty Acid (n3 and n6), Fatty Acid- Dicarboxylate, and Urea Cycle showed the most significant associations with PFAS, suggesting these may be particular pathways of interest in the physiological response to PFAS. To our knowledge, this is the first study to characterize associations between the global metabolome and PFAS across multiple periods in the life course to understand impacts on underlying biology, and the findings presented here are relevant in understanding how PFAS disrupt normal biological function and may ultimately give rise to harmful health effects.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Feminino , Criança , Gravidez , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácidos Graxos , Aminoácidos
19.
Respir Res ; 24(1): 15, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639661

RESUMO

BACKGROUND: Chronic respiratory diseases are disorders of the airways and other structures of the lung, and include chronic obstructive pulmonary disease (COPD), lung cancer, asthma, bronchiectasis, interstitial lung diseases, occupational lung diseases and pulmonary hypertension. Through this article we take a broad view of chronic lung disease while highlighting (1) the complex interactions of lung diseases with environmental factors (e.g. climate change, smoking and vaping) and multimorbidity and (2) proposed areas to strengthen for better global patient outcomes. CONCLUSION: We suggest new directions for the research agenda in high-priority populations and those experiencing health disparities. We call for lung disease to be made a research priority with greater funding allocation globally.


Assuntos
Asma , Doenças Pulmonares Intersticiais , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Crônica , Pulmão
20.
Free Radic Biol Med ; 194: 308-315, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509313

RESUMO

Proinflammatory bioactive lipid mediators and oxidative stress are increased in coronavirus disease 2019 (COVID-19). The randomized controlled single-blind trial COVID-Omega-F showed that intravenous omega-3 polyunsaturated fatty acids (n-3 PUFA) shifted the plasma lipid signature of COVID-19 towards increased proresolving precursor levels and decreased leukotoxin diols, associated with a beneficial immunodulatory response. The present study aimed to determine the effects of n-3 PUFA on the urinary oxylipidome and oxidative stress in COVID-19. From the COVID-Omega-F trial, 20 patients hospitalized for COVID-19 had available serial urinary samples collected at baseline, after 24-48 h, and after completing 5 days treatment with one daily intravenous infusion (2 mL/kg) of either placebo (NaCl; n = 10) or a lipid emulsion containing 10 g of n-3 PUFA per 100 mL (n = 10). Urinary eicosanoids and isoprostanes were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Erythrocytes obtained at the different time-points from n = 10 patients (n = 5 placebo and n = 5 n-3 PUFA) were used for determination of reactive oxygen species. Intravenous n-3 PUFA emulsion administration altered eicosanoid metabolites towards decreased levels for mediators of inflammation and thrombosis, and increased levels of the endothelial function mediator prostacyclin. Furthermore, non-enzymatic metabolism was skewed towards n-3 PUFA-derived metabolites with potential anti-inflammatory and pro-resolving effects. The oxidative stress marker 15-F2t-isoprostane was significantly lower in patients receiving n-3 PUFA treatment, who also exhibited significantly decreased erythrocyte oxidative stress compared with placebo-treated patients. These findings point to additional beneficial effects of intravenous n-3 PUFA emulsion treatment through a beneficial oxylipin profile and decreased oxidative stress in COVID-19.


Assuntos
COVID-19 , Ácidos Graxos Ômega-3 , Humanos , Emulsões , Cromatografia Líquida , Método Simples-Cego , Espectrometria de Massas em Tandem , Eicosanoides/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...