Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31490124

RESUMO

Voltage-gated potassium channels (Kvs) are gated by transmembrane voltage sensors (VS) that move in response to changes in membrane voltage. Kv10.1 or Eag1 also has three intracellular domains: PAS, C-linker, and CNBHD. We demonstrate that the Eag1 intracellular domains are not required for voltage-dependent gating but likely interact with the VS to modulate gating. We identified specific interactions between the PAS, CNBHD, and VS that modulate voltage-dependent gating and provide evidence that VS movement destabilizes these interactions to promote channel opening. Additionally, mutation of these interactions renders Eag1 insensitive to calmodulin inhibition. The structure of the calmodulin insensitive mutant in a pre-open conformation suggests that channel opening may occur through a rotation of the intracellular domains and calmodulin may prevent this rotation by stabilizing interactions between the VS and intracellular domains. Intracellular domains likely play a similar modulatory role in voltage-dependent gating of the related Kv11-12 channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Animais , Células CHO , Calmodulina/metabolismo , Cricetinae , Cricetulus , Canais de Potássio Éter-A-Go-Go/genética , Modelos Moleculares , Proteínas Mutantes/genética , Técnicas de Patch-Clamp , Conformação Proteica
2.
Science ; 353(6300): 664-9, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27516594

RESUMO

Voltage-gated potassium (K(v)) channels are gated by the movement of the transmembrane voltage sensor, which is coupled, through the helical S4-S5 linker, to the potassium pore. We determined the single-particle cryo-electron microscopy structure of mammalian K(v)10.1, or Eag1, bound to the channel inhibitor calmodulin, at 3.78 angstrom resolution. Unlike previous K(v) structures, the S4-S5 linker of Eag1 is a five-residue loop and the transmembrane segments are not domain swapped, which suggest an alternative mechanism of voltage-dependent gating. Additionally, the structure and position of the S4-S5 linker allow calmodulin to bind to the intracellular domains and to close the potassium pore, independent of voltage-sensor position. The structure reveals an alternative gating mechanism for K(v) channels and provides a template to further understand the gating properties of Eag1 and related channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Ativação do Canal Iônico , Animais , Sítios de Ligação , Calmodulina/química , Calmodulina/farmacologia , Microscopia Crioeletrônica , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/ultraestrutura , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Ratos
3.
Nature ; 510(7506): 512-7, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24965652

RESUMO

Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases (PKSs), has an architecture in which successive modules catalyse two-carbon linear extensions and keto-group processing reactions on intermediates covalently tethered to carrier domains. Here we used electron cryo-microscopy to determine sub-nanometre-resolution three-dimensional reconstructions of a full-length PKS module from the bacterium Streptomyces venezuelae that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intramodule carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time, to our knowledge, the structural basis for both intramodule and intermodule substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems.


Assuntos
Policetídeo Sintases/química , Policetídeo Sintases/ultraestrutura , Streptomyces/enzimologia , Biocatálise , Domínio Catalítico , Microscopia Crioeletrônica , Ácido Graxo Sintases/química , Macrolídeos/metabolismo , Modelos Moleculares , Policetídeo Sintases/metabolismo
4.
Nature ; 510(7506): 560-4, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24965656

RESUMO

The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the ß-keto intermediate, and after ß-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules.


Assuntos
Biocatálise , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Streptomyces/enzimologia , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila/ultraestrutura , Aciltransferases/química , Aciltransferases/metabolismo , Aciltransferases/ultraestrutura , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Domínio Catalítico , Microscopia Crioeletrônica , Macrolídeos/metabolismo , Modelos Moleculares , Policetídeo Sintases/ultraestrutura , Estrutura Terciária de Proteína
5.
Biosci Rep ; 34(2)2014 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27919033

RESUMO

14-3-3 proteins are highly conserved and have been found in all eukaryotic organisms investigated. They are involved in many varied cellular processes, and interact with hundreds of other proteins. Among many other roles in cells, yeast 14-3-3 proteins have been implicated in rapamycin-mediated cell signalling. We determined the transcription profiles of bmh1 and bmh2 yeast after treatment with rapamycin. We found that, under these conditions, BMH1 and BMH2 are required for rapamycin-induced regulation of distinct, but overlapping sets of genes. Both Bmh1 and Bmh2 associate with the promoters of at least some of these genes. BMH2, but not BMH1, attenuates the repression of genes involved in some functions required for ribosome biogenesis. BMH2 also attenuates the activation of genes sensitive to nitrogen catabolite repression.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia , Transcrição Gênica/efeitos dos fármacos , Proteínas 14-3-3/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Chem Biol ; 20(11): 1340-51, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24183970

RESUMO

Modular type I polyketide synthases (PKSs) are versatile biosynthetic systems that initiate, successively elongate, and modify acyl chains. Intermediate transfer between modules is mediated via docking domains, which are attractive targets for PKS pathway engineering to produce natural product analogs. We identified a class 2 docking domain in cyanobacterial PKSs and determined crystal structures for two docking domain pairs, revealing a distinct class 2 docking strategy for promoting intermediate transfer. The selectivity of class 2 docking interactions, demonstrated in binding and biochemical assays, could be altered by mutagenesis. We determined the ideal fusion location for exchanging class 1 and class 2 docking domains and demonstrated effective polyketide chain transfer in heterologous modules. Thus, class 2 docking domains are tools for rational bioengineering of a broad range of PKSs containing either class 1 or 2 docking domains.


Assuntos
Produtos Biológicos/metabolismo , Cianobactérias/enzimologia , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Engenharia de Proteínas , Produtos Biológicos/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Peptídeo Sintases/genética , Estrutura Terciária de Proteína
7.
Chem Biol ; 20(6): 772-83, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23790488

RESUMO

The formation of an activated cis-3-cyclohexylpropenoic acid by Plm1, the first extension module of the phoslactomycin polyketide synthase, is proposed to occur through an L-3-hydroxyacyl-intermediate as a result of ketoreduction by an A-type ketoreductase (KR). Here, we demonstrate that the KR domain of Plm1 (PlmKR1) catalyzes the formation of an L-3-hydroxyacyl product. The crystal structure of PlmKR1 revealed a well-ordered active site with a nearby Trp residue characteristic of A-type KRs. Structural comparison of PlmKR1 with B-type KRs that produce D-3-hydroxyacyl intermediates revealed significant differences. The active site of cofactor-bound A-type KRs is in a catalysis-ready state, whereas cofactor-bound B-type KRs are in a precatalytic state. Furthermore, the closed lid loop in substrate-bound A-type KRs restricts active site access from all but one direction, which is proposed to control the stereochemistry of ketoreduction.


Assuntos
Oxirredutases do Álcool/metabolismo , Alcenos/metabolismo , Proteínas de Bactérias/metabolismo , Oxirredutases do Álcool/química , Alcenos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Cinética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Estereoisomerismo , Especificidade por Substrato
8.
J Biol Chem ; 286(25): 22558-69, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21543318

RESUMO

Prodiginines are a class of red-pigmented natural products with immunosuppressant, anticancer, and antimalarial activities. Recent studies on prodiginine biosynthesis in Streptomyces coelicolor have elucidated the function of many enzymes within the pathway. However, the function of RedJ, which was predicted to be an editing thioesterase based on sequence similarity, is unknown. We report here the genetic, biochemical, and structural characterization of the redJ gene product. Deletion of redJ in S. coelicolor leads to a 75% decrease in prodiginine production, demonstrating its importance for prodiginine biosynthesis. RedJ exhibits thioesterase activity with selectivity for substrates having long acyl chains and lacking a ß-carboxyl substituent. The thioesterase has 1000-fold greater catalytic efficiency with substrates linked to an acyl carrier protein (ACP) than with the corresponding CoA thioester substrates. Also, RedJ strongly discriminates against the streptomycete ACP of fatty acid biosynthesis in preference to RedQ, an ACP of the prodiginine pathway. The 2.12 Å resolution crystal structure of RedJ provides insights into the molecular basis for the observed substrate selectivity. A hydrophobic pocket in the active site chamber is positioned to bind long acyl chains, as suggested by a long-chain ligand from the crystallization solution bound in this pocket. The accessibility of the active site is controlled by the position of a highly flexible entrance flap. These data combined with previous studies of prodiginine biosynthesis in S. coelicolor support a novel role for RedJ in facilitating transfer of a dodecanoyl chain from one acyl carrier protein to another en route to the key biosynthetic intermediate 2-undecylpyrrole.


Assuntos
Prodigiosina/análogos & derivados , Streptomyces coelicolor/enzimologia , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Prodigiosina/biossíntese , Deleção de Sequência , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Especificidade por Substrato , Tioléster Hidrolases/genética
9.
Biochemistry ; 48(41): 9801-9, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19694481

RESUMO

Dihydroorotate dehydrogenases (DHODs) are FMN-containing enzymes that catalyze the conversion of dihydroorotate (DHO) to orotate in the de novo synthesis of pyrimidines. During the reaction, a proton is transferred from C5 of DHO to an active site base and the hydrogen at C6 of DHO is transferred to N5 of the isoalloxazine ring of the flavin as a hydride. In class 2 DHODs, a hydrogen bond network observed in crystal structures has been proposed to deprotonate the C5 atom of DHO. The active site base (Ser175 in the Escherichia coli enzyme) hydrogen bonds to a crystallographic water molecule that sits on a phenylalanine (Phe115 in the E. coli enzyme) and hydrogen bonds to a threonine (Thr178 in the E. coli enzyme), residues that are conserved in class 2 enzymes. The importance of these residues in the oxidation of DHO was investigated using site-directed mutagenesis. Mutating Ser175 to alanine had severe effects on the rate of flavin reduction, slowing it by more than 3 orders of magnitude. Changing the size and/or hydrophobicity of the residues of the hydrogen bond network, Thr178 and Phe115, slowed flavin reduction as much as 2 orders of magnitude, indicating that the active site base and the hydrogen bond network work together for efficient deprotonation of DHO.


Assuntos
Escherichia coli/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Domínio Catalítico , Di-Hidro-Orotato Desidrogenase , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA