Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 198(7): 1171-81, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833407

RESUMO

UNLABELLED: Sinorhizobium meliloti forms N2-fixing root nodules on alfalfa, and as a free-living bacterium, it can grow on a very broad range of substrates, including l-proline and several related compounds, such as proline betaine, trans-4-hydroxy-l-proline (trans-4-l-Hyp), and cis-4-hydroxy-d-proline (cis-4-d-Hyp). Fourteen hyp genes are induced upon growth of S. meliloti on trans-4-l-Hyp, and of those, hypMNPQ encodes an ABC-type trans-4-l-Hyp transporter and hypRE encodes an epimerase that converts trans-4-l-Hyp to cis-4-d-Hyp in the bacterial cytoplasm. Here, we present evidence that the HypO, HypD, and HypH proteins catalyze the remaining steps in which cis-4-d-Hyp is converted to α-ketoglutarate. The HypO protein functions as a d-amino acid dehydrogenase, converting cis-4-d-Hyp to Δ(1)-pyrroline-4-hydroxy-2-carboxylate, which is deaminated by HypD to α-ketoglutarate semialdehyde and then converted to α-ketoglutarate by HypH. The crystal structure of HypD revealed it to be a member of the N-acetylneuraminate lyase subfamily of the (α/ß)8 protein family and is consistent with the known enzymatic mechanism for other members of the group. It was also shown that S. meliloti can catabolize d-proline as both a carbon and a nitrogen source, that d-proline can complement l-proline auxotrophy, and that the catabolism of d-proline is dependent on the hyp cluster. Transport of d-proline involves the HypMNPQ transporter, following which d-proline is converted to Δ(1)-pyrroline-2-carboxylate (P2C) largely via HypO. The P2C is converted to l-proline through the NADPH-dependent reduction of P2C by the previously uncharacterized HypS protein. Thus, overall, we have now completed detailed genetic and/or biochemical characterization of 9 of the 14 hyp genes. IMPORTANCE: Hydroxyproline is abundant in proteins in animal and plant tissues and serves as a carbon and a nitrogen source for bacteria in diverse environments, including the rhizosphere, compost, and the mammalian gut. While the main biochemical features of bacterial hydroxyproline catabolism were elucidated in the 1960s, the genetic and molecular details have only recently been determined. Elucidating the genetics of hydroxyproline catabolism will aid in the annotation of these genes in other genomes and metagenomic libraries. This will facilitate an improved understanding of the importance of this pathway and may assist in determining the prevalence of hydroxyproline in a particular environment.


Assuntos
Hidroxiprolina/metabolismo , Prolina/metabolismo , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Hidroxiprolina/química , Modelos Moleculares , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Conformação Proteica , Proteínas Recombinantes , Sinorhizobium meliloti/genética
2.
Mol Microbiol ; 85(6): 1133-47, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22804907

RESUMO

Hydroxyproline (Hyp) in decaying organic matter is a rich source of carbon and nitrogen for microorganisms. A bacterial pathway for Hyp catabolism is known; however, genes and function relationships are not established. In the pathway, trans-4-hydroxy-L-proline (4-L-Hyp) is epimerized to cis-4-hydroxy-D-proline (4-D-Hyp), and then, in three enzymatic reactions, the D-isomer is converted via Δ-pyrroline-4-hydroxy-2-carboxylate (HPC) and α-ketoglutarate semialdehyde (KGSA) to α-ketoglutarate (KG). Here a transcriptional analysis of cells growing on 4-L-Hyp, and the regulation and functions of genes from a Hyp catabolism locus of the legume endosymbiont Sinorhizobium meliloti are reported. Fourteen hydroxyproline catabolism genes (hyp), in five transcripts hypR, hypD, hypH, hypST and hypMNPQO(RE)XYZ, were negatively regulated by hypR. hypRE was shown to encode 4-hydroxyproline 2-epimerase and a hypRE mutant grew with 4-D-Hyp but not 4-L-Hyp. hypO, hypD and hypH are predicted to encode 4-D-Hyp oxidase, HPC deaminase and α-KGSA dehydrogenase respectively. The functions for hypS, hypT, hypX, hypY and hypZ remain to be determined. The data suggest 4-Hyp is converted to the tricarboxylic acid cycle intermediate α-ketoglutarate via the pathway established biochemically for Pseudomonas. This report describes the first molecular characterization of a Hyp catabolism locus.


Assuntos
Hidroxiprolina/metabolismo , Redes e Vias Metabólicas/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Perfilação da Expressão Gênica , Ordem dos Genes , Loci Gênicos , Ácidos Cetoglutáricos/metabolismo , Pseudomonas/genética
3.
Electrophoresis ; 31(16): 2831-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20665524

RESUMO

Isomerases involved in the metabolism of D/L-amino acids represent promising therapeutic targets for treatment of disease. Herein, we report a tunable platform for the assessment of enzymatic kinetics involving amino acid isomerization by CE that offers improved selectivity and sensitivity over traditional methods. Enzyme activity and competition assays were evaluated for various hydroxyproline diastereoisomers, proline enantiomers and their structural analogs using 4-hydroxyproline-2-epimerase as a model system. In this work, pyrrole 2-carboxylic acid was found to be a selective inhibitor of 4-hydroxyproline-2-epimerase with a half-maximal inhibition concentration of (2.3 + or - 0.1) mM. Reliable methods for unambiguous characterization of amino acid isomerases are required for the screening of novel inhibitors with epimerase and/or racemase activity.


Assuntos
Isomerases de Aminoácido/metabolismo , Pseudomonas aeruginosa/enzimologia , Isomerases de Aminoácido/antagonistas & inibidores , Isomerases de Aminoácido/isolamento & purificação , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Fibrose Cística/patologia , Eletroforese Capilar/métodos , Inibidores Enzimáticos/farmacologia , Humanos , Hidroxiprolina/metabolismo , Cinética , Prolina/metabolismo , Pseudomonas aeruginosa/patogenicidade , Sensibilidade e Especificidade
4.
Mol Plant Microbe Interact ; 22(9): 1116-27, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19656046

RESUMO

Hydroxyproline-rich proteins in plants offer a source of carbon and nitrogen to soil-dwelling microorganisms in the form of root exudates and decaying organic matter. This report describes an ABC-type transport system dedicated to the uptake of hydroxyproline in the legume endosymbiont Sinorhizobium meliloti. We have designated genes involved in hydroxyproline metabolism as hyp genes and show that an S. meliloti strain lacking putative transport genes (DeltahypMNPQ) is unable to grow with or transport trans-4-hydroxy-l-proline when this compound is available as a sole source of carbon. Expression of hypM is upregulated in the presence of trans-4-hydroxy-l-proline and cis-4-hydroxy-d-proline, as modulated by a repressor (HypR) of the GntR/FadR subfamily. Although alfalfa root nodules contain hydroxyproline-rich proteins, we demonstrate that the transport system is not highly expressed in nodules, suggesting that bacteroids are not exposed to high levels of free hydroxyproline in planta. In addition to hypMNPQ, we report that S. meliloti encodes a second independent mechanism that enables transport of trans-4-hydroxy-l-proline. This secondary transport mechanism is induced in proline-grown cells and likely entails a system involved in l-proline uptake. This study represents the first genetic description of a prokaryotic hydroxyproline transport system, and the ability to metabolize hydroxyproline may contribute significantly toward the ecological success of plant-associated bacteria such as the rhizobia.


Assuntos
Fabaceae/microbiologia , Hidroxiprolina/metabolismo , Sinorhizobium meliloti/metabolismo , Simbiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Fabaceae/efeitos dos fármacos , Fabaceae/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Hidroxiprolina/farmacologia , Imuno-Histoquímica , Medicago sativa/citologia , Medicago sativa/efeitos dos fármacos , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Dados de Sequência Molecular , Família Multigênica , Filogenia , Regiões Promotoras Genéticas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/efeitos dos fármacos , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Sítio de Iniciação de Transcrição
6.
Mol Microbiol ; 64(1): 245-56, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17376086

RESUMO

TraR of Agrobacterium tumefaciens is a member of the LuxR family of transcriptional regulators, and binds to specific DNA sequences (tra boxes) at target promoters of the tumour-inducing (Ti) plasmid. Each tra box has a pronounced dyad symmetry, and each subunit of a TraR dimer binds to one half of a tra box via a helix-turn-helix (HTH) DNA binding motif. Structural analysis has suggested that TraR makes extensive sequence-specific contacts with tra box DNA. In this study, we tested these predictions using synthetic self-complementary oligonucleotides containing variant tra box sequences. Some predictions made from structural analysis were confirmed, while others were shown to be incorrect. Unexpectedly, these experiments also showed that six nucleotides at the centre of the tra box that make no direct contact with TraR are nevertheless critical for high-affinity binding and probably act by facilitating a previously described DNA bend. Variant tra boxes were also tested for transcription activity in vivo. Most transcription assays reflected in vitro binding assays. However, alterations of the outermost nucleotides had little effect on TraR binding but blocked transcription, probably by altering an overlapping -35 promoter motif.


Assuntos
Agrobacterium tumefaciens/crescimento & desenvolvimento , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dados de Sequência Molecular , Mutação Puntual , Fatores de Transcrição
7.
Philos Trans R Soc Lond B Biol Sci ; 362(1483): 1135-48, 2007 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-17360279

RESUMO

The plant pathogen Agrobacterium tumefaciens induces the formation of crown gall tumours at wound sites on host plants by directly transforming plant cells. This disease strategy benefits the bacteria as the infected plant tissue produces novel nutrients, called opines, that the colonizing bacteria can use as nutrients. Almost all of the genes that are required for virulence, and all of the opine uptake and utilization genes, are carried on large tumour-inducing (Ti) plasmids. The observation more than 25 years ago that specific opines are required for Ti plasmid conjugal transfer led to the discovery of a cell-cell signalling system on these plasmids that is similar to the LuxR-LuxI system first described in Vibrio fischeri. All Ti plasmids that have been described to date carry a functional LuxI-type N-acylhomoserine lactone synthase (TraI), and a LuxR-type signal receptor and transcriptional regulator called TraR. The traR genes are expressed only in the presence of specific opines called conjugal opines. The TraR-TraI system provides an important model for LuxR-LuxI-type systems, especially those found in the agriculturally important Rhizobiaceae family. In this review, we discuss current advances in the biochemistry and structural biology of the TraR-TraI system.


Assuntos
Agrobacterium tumefaciens/fisiologia , Tumores de Planta/microbiologia , Plantas/microbiologia , Percepção de Quorum/fisiologia , Agrobacterium tumefaciens/genética , Conjugação Genética/genética , Conjugação Genética/fisiologia , Modelos Moleculares , Proteínas de Plantas/fisiologia , Percepção de Quorum/genética
8.
Mol Microbiol ; 57(2): 452-67, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15978077

RESUMO

Burkholderia cenocepacia is an opportunistic human pathogen that can aggressively colonize the cystic fibrosis lung. This organism has a LuxR/LuxI-type quorum sensing system that enables cell-cell communication via exchange of acyl homoserine lactones (AHLs). The CepR and CepI proteins constitute a global regulatory system, controlling expression of at least 40 genes, including those controlling swarming motility and biofilm formation. In this study, we isolated seven lacZ fusions in a clinical isolate of B. cenocepacia that are inducible by octanoyl-HSL. Induction of all of these genes requires CepR. The cepI promoter was tested for induction by a set of 33 synthetic autoinducers and analogues, and was most strongly induced by long-chain AHLs lacking 3-oxo substitutions. Expression of this promoter was inhibited by high concentrations of three different autoinducers, each having six-carbon acyl chains. When CepR protein was overproduced in Escherichia coli, it accumulated in a soluble form in the presence of octanoyl-HSL, but accumulated only as insoluble inclusion bodies in its absence. Purified CepR-OHL complexes bound to specific DNA sequences at the cepI and aidA promoters with high specificity. These binding sites included a 16-nucleotide imperfect dyad symmetry. Both CepR binding sites are centred approximately 44 nucleotides upstream of the respective transcription start sites.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia/fisiologia , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , 4-Butirolactona/análogos & derivados , 4-Butirolactona/fisiologia , Sítios de Ligação , Burkholderia/genética , Pegada de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Ligases/genética , Ligação Proteica , Sítio de Iniciação de Transcrição
9.
Mol Microbiol ; 55(5): 1473-86, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15720554

RESUMO

The LuxR-type quorum-sensing transcription factor TraR regulates replication and conjugal transfer of the tumour-inducing (Ti) plasmid in the plant pathogen Agrobacterium tumefaciens. TraR is a two-domain protein with an N-terminal domain that binds to the quorum-sensing signal N-3-oxooctanoyl- l-homoserine lactone (OOHL) and a C-terminal domain that binds to specific DNA sequences called tra boxes. TraR-OOHL complexes form homodimers that activate transcription of at least seven promoters on the Ti plasmid. At five promoters, a tra box overlaps the binding site of core RNA polymerase (class II promoters), while in the other two promoters, this site is located farther upstream (class I promoters). In this study, we performed saturating point mutagenesis of the surface residues of the TraR C-terminal domain. Each mutant was tested for proteolytic stability and transcription activity in vivo, and for DNA binding activity in vitro. Mutants of TraR with single substitutions at positions W184, V187, K189, E193Q, V197 and D217 have wild-type levels of accumulation and DNA binding, but are defective in transcription of both types of promoters. These residues constitute a patch on the surface of the DNA-binding domain. We propose that this patch is an activating region that recruits RNA polymerase to TraR-dependent promoters through direct contact. As residues of this patch are critical for activation at both a class I and a class II promoter, we predict that these residues may contact the C-terminal domain of the RNA polymerase alpha-subunit.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/química , Homosserina/fisiologia , Transdução de Sinais , Agrobacterium tumefaciens/fisiologia , Aminoácidos/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Reguladores/genética , Homosserina/análogos & derivados , Homosserina/metabolismo , Mutação/genética , Mutação/fisiologia , Plasmídeos/genética , Plasmídeos/fisiologia , Regiões Promotoras Genéticas , Transativadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...