Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(2): 1745-1756, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31922396

RESUMO

Magnesium borohydride (Mg(BH4)2, abbreviated here MBH) has received tremendous attention as a promising onboard hydrogen storage medium due to its excellent gravimetric and volumetric hydrogen storage capacities. While the polymorphs of MBH-alpha (α), beta (ß), and gamma (γ)-have distinct properties, their synthetic homogeneity can be difficult to control, mainly due to their structural complexity and similar thermodynamic properties. Here, we describe an effective approach for obtaining pure polymorphic phases of MBH nanomaterials within a reduced graphene oxide support (abbreviated MBHg) under mild conditions (60-190 °C under mild vacuum, 2 Torr), starting from two distinct samples initially dried under Ar and vacuum. Specifically, we selectively synthesize the thermodynamically stable α phase and metastable ß phase from the γ-phase within the temperature range of 150-180 °C. The relevant underlying phase evolution mechanism is elucidated by theoretical thermodynamics and kinetic nucleation modeling. The resulting MBHg composites exhibit structural stability, resistance to oxidation, and partially reversible formation of diverse [BH4]- species during de- and rehydrogenation processes, rendering them intriguing candidates for further optimization toward hydrogen storage applications.

2.
Chemphyschem ; 20(15): 1997-2009, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31177637

RESUMO

In order to determine a material's hydrogen storage potential, capacity measurements must be robust, reproducible, and accurate. Commonly, research reports focus on the gravimetric capacity, and often times the volumetric capacity is not reported. Determining volumetric capacities is not as straight-forward, especially for amorphous materials. This is the first study to compare measurement reproducibility across laboratories for excess and total volumetric hydrogen sorption capacities based on the packing volume. The use of consistent measurement protocols, common analysis, and figure of merits for reporting data in this study, enable the comparison of the results for two different materials. Importantly, the results show good agreement for excess gravimetric capacities amongst the laboratories. Irreproducibility for excess and total volumetric capacities is attributed to real differences in the measured packing volume of the material.

3.
Chemphyschem ; 20(10): 1305-1310, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30900285

RESUMO

Stability of metal-organic frameworks (MOFs) under hydrogen is of particular importance for a diverse range of applications, including catalysis, gas separations, and hydrogen storage. Hydrogen in gaseous form is known to be a strong reducing agent and can potentially react with the secondary building units of a MOF and decompose the porous framework structure. Moreover, rapid pressure swings expected in vehicular hydrogen storage could create significant mechanical stresses within MOF crystals that cause partial or complete pore collapse. In this work, we examined the stability of a structurally representative suite of MOFs by testing them under both static (70 MPa) and dynamic hydrogen exposure (0.5 to 10 MPa, 1000 pressure cycles) at room temperature. We aim to provide stability information for development of near room-temperature hydrogen storage media based on MOFs and suggest framework design rules to avoid materials unstable for hydrogen storage under relevant technical conditions.

4.
Chemphyschem ; 20(10): 1301-1304, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30843647

RESUMO

Modification of magnesium diboride, MgB2 , by mechanical milling with THF, MgH2 , and/or Mg results in a lowering of the conditions required for its direct, bulk hydrogenation to magnesium borohydride, Mg(BH4 )2 , by 300 bar and 100 °C. Following mechanical milling with MgH2 or THF and Mg, MgB2 can be hydrogenated to Mg(BH4 )2 at 300 °C under 700 bar of H2 while achieving ∼54-71 % conversion to the borohydride. The discovery of a means of dramatically lowering the conditions required for the hydrogenation of MgB2 is an important step towards the development of a practical onboard hydrogen storage system based on hydrogen cycling between Mg(BH4 )2 and MgB2 . We suggest that mechano-milling with THF, Mg, and/or MgH2 may possibly introduce defects in the MgB2 structure which enhance hydrogenation. The ability to activate the MgB2 through the introduction of structural defects transcends its relevance to hydrogen storage, as a method of overcoming its chemical inertness provides the key to harnessing other interesting properties of this material.

5.
Chemphyschem ; 20(10): 1261-1271, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30737862

RESUMO

In this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions. Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility. A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.

6.
ACS Appl Mater Interfaces ; 11(5): 4930-4941, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30630309

RESUMO

Solid-state metal hydrides are prime candidates to replace compressed hydrogen for fuel cell vehicles due to their high volumetric capacities. Sodium aluminum hydride has long been studied as an archetype for higher-capacity metal hydrides, with improved reversibility demonstrated through the addition of titanium catalysts; however, atomistic mechanisms for surface processes, including hydrogen desorption, are still uncertain. Here, operando and ex situ measurements from a suite of diagnostic tools probing multiple length scales are combined with ab initio simulations to provide a detailed and unbiased view of the evolution of the surface chemistry during hydrogen release. In contrast to some previously proposed mechanisms, the titanium dopant does not directly facilitate desorption at the surface. Instead, oxidized surface species, even on well-protected NaAlH4 samples, evolve during dehydrogenation to form surface hydroxides with differing levels of hydrogen saturation. Additionally, the presence of these oxidized species leads to considerably lower computed barriers for H2 formation compared to pristine hydride surfaces, suggesting that oxygen may actively participate in hydrogen release, rather than merely inhibiting diffusion as is commonly presumed. These results demonstrate how close experiment-theory feedback can elucidate mechanistic understanding of complex metal hydride chemistry and potentially impactful roles of unavoidable surface impurities.

7.
Chem Rev ; 118(22): 10775-10839, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30277071

RESUMO

Knowledge and foundational understanding of phenomena associated with the behavior of materials at the nanoscale is one of the key scientific challenges toward a sustainable energy future. Size reduction from bulk to the nanoscale leads to a variety of exciting and anomalous phenomena due to enhanced surface-to-volume ratio, reduced transport length, and tunable nanointerfaces. Nanostructured metal hydrides are an important class of materials with significant potential for energy storage applications. Hydrogen storage in nanoscale metal hydrides has been recognized as a potentially transformative technology, and the field is now growing steadily due to the ability to tune the material properties more independently and drastically compared to those of their bulk counterparts. The numerous advantages of nanostructured metal hydrides compared to bulk include improved reversibility, altered heats of hydrogen absorption/desorption, nanointerfacial reaction pathways with faster rates, and new surface states capable of activating chemical bonds. This review aims to summarize the progress to date in the area of nanostructured metal hydrides and intends to understand and explain the underpinnings of the innovative concepts and strategies developed over the past decade to tune the thermodynamics and kinetics of hydrogen storage reactions. These recent achievements have the potential to propel further the prospects of tuning the hydride properties at nanoscale, with several promising directions and strategies that could lead to the next generation of solid-state materials for hydrogen storage applications.

8.
Phys Chem Chem Phys ; 20(23): 16266-16275, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29863201

RESUMO

The hydrogen absorption properties of metal closo-borate/metal hydride composites, M2B10H10-8MH and M2B12H12-10MH, M = Li or Na, are studied under high hydrogen pressures to understand the formation mechanism of metal borohydrides. The hydrogen storage properties of the composites have been investigated by in situ synchrotron radiation powder X-ray diffraction at p(H2) = 400 bar and by ex situ hydrogen absorption measurements at p(H2) = 526 to 998 bar. The in situ experiments reveal the formation of crystalline intermediates before metal borohydrides (MBH4) are formed. On the contrary, the M2B12H12-10MH (M = Li and Na) systems show no formation of the metal borohydride at T = 400 °C and p(H2) = 537 to 970 bar. 11B MAS NMR of the M2B10H10-8MH composites reveal that the molar ratio of LiBH4 or NaBH4 and the remaining B species is 1 : 0.63 and 1 : 0.21, respectively. Solution and solid-state 11B NMR spectra reveal new intermediates with a B : H ratio close to 1 : 1. Our results indicate that the M2B10H10 (M = Li, Na) salts display a higher reactivity towards hydrogen in the presence of metal hydrides compared to the corresponding [B12H12]2- composites, which represents an important step towards understanding the factors that determine the stability and reversibility of high hydrogen capacity metal borohydrides for hydrogen storage.

9.
Phys Chem Chem Phys ; 19(34): 22646-22658, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28795705

RESUMO

Mg(BH4)2 is a promising solid-state hydrogen storage material, releasing 14.9 wt% hydrogen upon conversion to MgB2. Although several dehydrogenation pathways have been proposed, the hydrogenation process is less well understood. Here, we present a joint experimental-theoretical study that elucidates the key atomistic mechanisms associated with the initial stages of hydrogen uptake within MgB2. Fourier transform infrared, X-ray absorption, and X-ray emission spectroscopies are integrated with spectroscopic simulations to show that hydrogenation can initially proceed via direct conversion of MgB2 to Mg(BH4)2 complexes. The associated energy landscape is mapped by combining ab initio calculations with barriers extracted from the experimental uptake curves, from which a kinetic model is constructed. The results from the kinetic model suggest that initial hydrogenation takes place via a multi-step process: molecular H2 dissociation, likely at Mg-terminated MgB2 surfaces, is followed by migration of atomic hydrogen to defective boron sites, where the formation of stable B-H bonds ultimately leads to the direct creation of Mg(BH4)2 complexes without persistent BxHy intermediates. Implications for understanding the chemical, structural, and electronic changes upon hydrogenation of MgB2 are discussed.

10.
Phys Chem Chem Phys ; 18(36): 25546-25552, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711618

RESUMO

The structure-dependent vibrational properties of different Mg(BH4)2 polymorphs (α, ß, γ, and δ phases) were investigated with a combination of neutron vibrational spectroscopy (NVS) measurements and density functional theory (DFT) calculations, with emphasis placed on the effects of the local structure and orientation of the BH4- anions. DFT simulations closely match the neutron vibrational spectra. The main bands in the low-energy region (20-80 meV) are associated with the BH4- librational modes. The features in the intermediate energy region (80-120 meV) are attributed to overtones and combination bands arising from the lower-energy modes. The features in the high-energy region (120-200 meV) correspond to the BH4- symmetric and asymmetric bending vibrations, of which four peaks located at 140, 142, 160, and 172 meV are especially intense. There are noticeable intensity distribution variations in the vibrational bands for different polymorphs. This is explained by the differences in the spatial distribution of BH4- anions within various structures. An example of the possible identification of products after the hydrogenation of MgB2, using NVS measurements, is presented. These results provide fundamental insights of benefit to researchers currently studying these promising hydrogen-storage materials.

12.
Langmuir ; 30(25): 7593-600, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24940629

RESUMO

The interactions of CO2 with indium metal electrodes have been characterized for electrochemical formate production. The electrode oxidation state, morphology, and voltammetric behaviors were systematically probed. It was found that an anodized indium electrode stabilized formate production over time compared to etched indium electrodes and indium electrodes bearing a native oxide in applied potential range of -1.4 to -1.8 V vs SCE. In addition, it was observed that formate is the major product at unprecedentedly low overpotentials at the anodized surface. A surface hydroxide species was observed suggesting a mechanism of formate production that involves insertion of CO2 at the indium interface to form an electroactive surface bicarbonate species.

13.
Phys Rev Lett ; 108(25): 253006, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23004597

RESUMO

We report the first study of UV-induced photoisomerization probed via core ionization by an x-ray laser. We investigated x-ray ionization and fragmentation of the cyclohexadiene-hexatriene system at 850 eV during the ring opening. We find that the ion-fragmentation patterns evolve over a picosecond, reflecting a change in the state of excitation and the molecular geometry: the average kinetic energy per ion fragment and H(+)-ion count increase as the ring opens and the molecule elongates. We discuss new opportunities for molecular photophysics created by optical pump x-ray probe experiments.


Assuntos
Alcenos/química , Ciclização/efeitos da radiação , Cicloexenos/química , Polienos/química , Processos Fotoquímicos , Espectrofotometria Ultravioleta , Termodinâmica , Raios X
15.
J Phys Chem A ; 116(11): 2758-63, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22082319

RESUMO

We have studied the photoinduced isomerization from 1,3-cyclohexadiene to 1,3,5-hexatriene in the presence of an intense ultrafast laser pulse. We find that the laser field maximally suppresses isomerization if it is both polarized parallel to the excitation dipole and present 50 fs after the initial photoabsorption, at the time when the system is expected to be in the vicinity of a conical intersection that mediates this structural transition. A modified ab initio multiple spawning (AIMS) method shows that the laser induces a resonant coupling between the excited state and the ground state, i.e., a light-induced conical intersection. The theory accounts for the timing and direction of the effect.

16.
Proc Natl Acad Sci U S A ; 106(27): 10896-900, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19564608

RESUMO

A learning algorithm was used to manipulate optical pulse shapes and optimize retinal isomerization in bacteriorhodopsin, for excitation levels up to 1.8 x 10(16) photons per square centimeter. Below 1/3 the maximum excitation level, the yield was not sensitive to pulse shape. Above this level the learning algorithm found that a Fourier-transform-limited (TL) pulse maximized the 13-cis population. For this optimal pulse the yield increases linearly with intensity well beyond the saturation of the first excited state. To understand these results we performed systematic searches varying the chirp and energy of the pump pulses while monitoring the isomerization yield. The results are interpreted including the influence of 1-photon and multiphoton transitions. The population dynamics in each intermediate conformation and the final branching ratio between the all-trans and 13-cis isomers are modified by changes in the pulse energy and duration.


Assuntos
Bacteriorodopsinas/química , Halobacterium salinarum/química , Luz , Retinaldeído/química , Absorção , Isomerismo , Análise Espectral
17.
J Phys Chem A ; 112(30): 6811-22, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18593101

RESUMO

Although physical chemistry has often concentrated on the observation and understanding of chemical systems, the defining characteristic of chemistry remains the direction and control of chemical reactivity. Optical control of molecular dynamics, and thus of chemical reactivity provides a path to use photon energy as a smart reagent in a chemical system. In this paper, we discuss recent research in this field in the context of our studies of the multiphoton optical control of the photo-initiated ring-opening reaction of 1,3-cyclohexadiene (CHD) to form 1,3,5- cis-hexatriene (Z-HT). Closed-loop feedback and learning algorithms are able to identify pulses that increase the desired target state by as much as a factor of two. Mechanisms for control are discussed through the influence of the intensity dependence, the nonlinear power spectrum, and the projection of the pulses onto low orders of polynomial phase. Control measurements in neat solvents demonstrate that competing solvent fragmentation reactions must also be considered. In particular, multiphoton excitation of cyclohexane alone is capable of producing hexatriene. Statistical analyses of data sets obtained in learning algorithm searches in neat cyclohexane and for CHD in hexane and cyclohexane highlight the importance of linear and quadratic chirp, while demonstrating that the control features are not so easily defined. Higher order phase components are also important. On the basis of these results the involvement of low-frequency ground-state vibrational modes is proposed. When the population is transferred to the excited state, momentum along the torsional coordinate may keep the wave packet localized as it moves toward the conical intersections controlling the yield of Z-HT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...