Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(4): 1024-1040, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592451

RESUMO

Non-Hodgkin lymphoma (NHL) is a common cancer in both men and women and represents a significant cancer burden worldwide. Primary effusion lymphoma (PEL) is a subtype of NHL infected with Kaposi sarcoma-associated herpesvirus (KSHV). PEL is an aggressive and lethal cancer with no current standard of care, owing largely to its propensity to develop resistance to current chemotherapeutic regimens. Here, we report a reliance of KSHV-positive PEL on the mitotic kinase, NEK2, for survival. Inhibition of NEK2 with the inhibitor, JH295, resulted in caspase 3-mediated apoptotic cell death of PEL. Furthermore, NEK2 inhibition significantly prolonged survival and reduced tumor burden in a PEL mouse model. We also demonstrate that the ABC transporter proteins, MDR1 and MRP, are most active in PEL and that inhibition of NEK2 in PEL reduced the expression and activity of these ABC transporter proteins, which are known to mediate drug resistance in cancer. Finally, we report that JH295 treatment sensitized lymphomas to other chemotherapeutic agents such as rapamycin, resulting in enhanced cancer cell death. Overall, these data offer important insight into the mechanisms underlying PEL survival and drug resistance, and suggest that NEK2 is a viable therapeutic target for PEL. SIGNIFICANCE: The mitotic kinase, NEK2, is important for the survival of KSHV-positive PEL. NEK2 inhibition resulted in PEL apoptosis and reduced tumor burden in a mouse model. NEK2 inhibition also reduced drug resistance.


Assuntos
Herpesvirus Humano 8 , Linfoma não Hodgkin , Linfoma de Efusão Primária , Masculino , Animais , Camundongos , Humanos , Feminino , Linfoma de Efusão Primária/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP , Agressão , Modelos Animais de Doenças , Quinases Relacionadas a NIMA/genética
2.
Cell Death Dis ; 14(10): 688, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852997

RESUMO

Oncogenic viruses have developed various strategies to antagonize cell death and maintain lifelong persistence in their host, a relationship that may contribute to cancer development. Understanding how viruses inhibit cell death is essential for understanding viral oncogenesis. Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with three different cancers in the human population, including Kaposi's sarcoma (KS), the most common cancer in HIV patients. Previous studies have indicated that the KSHV-encoded viral protein kinase (vPK) impacts many processes dysregulated in tumorigenesis. Here, we report that vPK protects cells from apoptosis mediated by Caspase-3. Human umbilical vein endothelial cells (HUVECs) expressing vPK (HUVEC-vPK) have a survival advantage over control HUVEC under conditions of extrinsic- and intrinsic-mediated apoptosis. Abolishing the catalytic activity of vPK attenuated this survival advantage. We found that KSHV vPK-expressing HUVECs exhibited increased activation of cellular AKT kinase, a cell survival kinase, compared to control cells without vPK. In addition, we report that vPK directly binds the pleckstrin homology (PH) domain of AKT1 but not AKT2 or AKT3. Treatment of HUVEC-vPK cells with a pan-AKT inhibitor Miransertib (ARQ 092) reduced the overall phosphorylation of AKT, resulting in the cleavage of Caspase-3 and the induction of apoptosis. Furthermore, vPK expression activated VEGF/VEGFR2 in HUVECs and promoted angiogenesis through the AKT pathway. vPK expression also inhibited the cytotoxicity of cisplatin in vitro and in vivo. Collectively, our findings demonstrate that vPK's ability to augment cell survival and promote angiogenesis is critically dependent on AKT signaling, which is relevant for future therapies for treating KSHV-associated cancers.


Assuntos
Infecções por HIV , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Proteínas Virais/metabolismo , Caspase 3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo
3.
Curr Opin Immunol ; 78: 102253, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36240666

RESUMO

Malignancies that arise as a result of viral infection account for roughly 15% of cancer cases worldwide. The innate immune system is the body's first line of defense against oncogenic viral infection and is also involved in the response against viral-driven tumors. In this review, we discuss research advances made over the last five years elucidating how the innate immune system recognizes and responds to oncogenic viruses, how these viruses have evolved to escape this immune pressure, and ways that innate immunity can inform the development of novel therapeutics against oncogenic viral infection and their associated cancers.


Assuntos
Neoplasias , Viroses , Humanos , Vírus Oncogênicos , Imunidade Inata , Biologia
4.
J Mol Biol ; 434(6): 167214, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34437888

RESUMO

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.


Assuntos
Gammaherpesvirinae , Infecções por Herpesviridae , Evasão da Resposta Imune , Imunidade Inata , Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Humanos , Latência Viral
5.
Adv Virus Res ; 109: 201-254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33934828

RESUMO

The DNA viruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are members of the gammaherpesvirus subfamily, a group of viruses whose infection is associated with multiple malignancies, including cancer. The primary host for these viruses is humans and, like all herpesviruses, infection with these pathogens is lifelong. Due to the persistence of gammaherpesvirus infection and the potential for cancer formation in infected individuals, there is a driving need to understand not only the biology of these viruses and how they remain undetected in host cells but also the mechanism(s) by which tumorigenesis occurs. One of the methods that has provided much insight into these processes is proteomics. Proteomics is the study of all the proteins that are encoded by a genome and allows for (i) identification of existing and novel proteins derived from a given genome, (ii) interrogation of protein-protein interactions within a system, and (iii) discovery of druggable targets for the treatment of malignancies. In this chapter, we explore how proteomics has contributed to our current understanding of gammaherpesvirus biology and their oncogenic processes, as well as the clinical applications of proteomics for the detection and treatment of gammaherpesvirus-associated cancers.


Assuntos
Carcinogênese , Gammaherpesvirinae/patogenicidade , Interações entre Hospedeiro e Microrganismos , Proteômica/métodos , Livros , Vírus de DNA/patogenicidade , Gammaherpesvirinae/genética , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/tratamento farmacológico , Humanos , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/tratamento farmacológico , Replicação Viral
6.
Nat Microbiol ; 5(9): 1158-1169, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632248

RESUMO

Infection with a single influenza A virus (IAV) is only rarely sufficient to initiate productive infection. Instead, multiple viral genomes are often required in a given cell. Here, we show that the reliance of IAV on multiple infection can form an important species barrier. Namely, we find that avian H9N2 viruses representative of those circulating widely at the poultry-human interface exhibit acute dependence on collective interactions in mammalian systems. This need for multiple infection is greatly reduced in the natural host. Quantification of incomplete viral genomes showed that their complementation accounts for the moderate reliance on multiple infection seen in avian cells but not the added reliance seen in mammalian cells. An additional form of virus-virus interaction is needed in mammals. We find that the PA gene segment is a major driver of this phenotype and that both viral replication and transcription are affected. These data indicate that multiple distinct mechanisms underlie the reliance of IAV on multiple infection and underscore the importance of virus-virus interactions in IAV infection, evolution and emergence.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia , Animais , Aves , Galinhas , Coturnix , Modelos Animais de Doenças , Cães , Feminino , Genoma Viral , Cobaias , Especificidade de Hospedeiro , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/virologia
7.
Proc Natl Acad Sci U S A ; 116(10): 4611-4618, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760600

RESUMO

Influenza A virus (IAV) has a segmented genome, which (i) allows for exchange of gene segments in coinfected cells, termed reassortment, and (ii) necessitates a selective packaging mechanism to ensure incorporation of a complete set of segments into virus particles. Packaging signals serve as segment identifiers and enable segment-specific packaging. We have previously shown that packaging signals limit reassortment between heterologous IAV strains in a segment-dependent manner. Here, we evaluated the extent to which packaging signals prevent reassortment events that would raise concern for pandemic emergence. Specifically, we tested the compatibility of hemagglutinin (HA) packaging signals from H5N8 and H7N9 avian IAVs with a human seasonal H3N2 IAV. By evaluating reassortment outcomes, we demonstrate that HA segments carrying H5 or H7 packaging signals are significantly disfavored for incorporation into a human H3N2 virus in both cell culture and a guinea pig model. However, incorporation of the heterologous HAs was not excluded fully, and variants with heterologous HA packaging signals were detected at low levels in vivo, including in naïve contact animals. This work indicates that the likelihood of reassortment between human seasonal IAV and avian IAV is reduced by divergence in the RNA packaging signals of the HA segment. These findings offer important insight into the molecular mechanisms governing IAV emergence and inform efforts to estimate the risks posed by H7N9 and H5N8 subtype avian IAVs.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H5N8/fisiologia , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Vírus Reordenados/fisiologia , Montagem de Vírus , Animais , Cobaias , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza A Subtipo H5N8/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Masculino , Vírus Reordenados/genética
8.
J Gen Virol ; 99(1): 3-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29244017

RESUMO

Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity.


Assuntos
Evolução Molecular , Genoma Viral , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/veterinária , RNA Viral/genética , Animais , Variação Antigênica , Aves/virologia , Genótipo , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H3N2/classificação , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Mutação , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Vírus Reordenados/genética
9.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331085

RESUMO

Influenza A virus (IAV) RNA packaging signals serve to direct the incorporation of IAV gene segments into virus particles, and this process is thought to be mediated by segment-segment interactions. These packaging signals are segment and strain specific, and as such, they have the potential to impact reassortment outcomes between different IAV strains. Our study aimed to quantify the impact of packaging signal mismatch on IAV reassortment using the human seasonal influenza A/Panama/2007/99 (H3N2) and pandemic influenza A/Netherlands/602/2009 (H1N1) viruses. Focusing on the three most divergent segments, we constructed pairs of viruses that encoded identical proteins but differed in the packaging signal regions on a single segment. We then evaluated the frequency with which segments carrying homologous versus heterologous packaging signals were incorporated into reassortant progeny viruses. We found that, when segment 4 (HA) of coinfecting parental viruses was modified, there was a significant preference for the segment containing matched packaging signals relative to the background of the virus. This preference was apparent even when the homologous HA constituted a minority of the HA segment population available in the cell for packaging. Conversely, when segment 6 (NA) or segment 8 (NS) carried modified packaging signals, there was no significant preference for homologous packaging signals. These data suggest that movement of NA and NS segments between the human H3N2 and H1N1 lineages is unlikely to be restricted by packaging signal mismatch, while movement of the HA segment would be more constrained. Our results indicate that the importance of packaging signals in IAV reassortment is segment dependent.IMPORTANCE Influenza A viruses (IAVs) can exchange genes through reassortment. This process contributes to both the highly diverse population of IAVs found in nature and the formation of novel epidemic and pandemic IAV strains. Our study sought to determine the extent to which IAV packaging signal divergence impacts reassortment between seasonal IAVs. Our knowledge in this area is lacking, and insight into the factors that influence IAV reassortment will inform and strengthen ongoing public health efforts to anticipate the emergence of new viruses. We found that the packaging signals on the HA segment, but not the NA or NS segments, restricted IAV reassortment. Thus, the packaging signals of the HA segment could be an important factor in determining the likelihood that two IAV strains of public health interest will undergo reassortment.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus Reordenados/fisiologia , Montagem de Vírus , Animais , Evolução Molecular , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus Reordenados/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Vírion/fisiologia
10.
Biochemistry ; 56(2): 421-440, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28000448

RESUMO

DNA-alkylating drugs continue to remain an important weapon in the arsenal against cancers. However, they typically suffer from several shortcomings because of the indiscriminate DNA damage that they cause and their inability to specifically target cancer cells. We have developed a strategy for overcoming the deficiencies in current DNA-alkylating chemotherapy drugs by designing a site-specific DNA-methylating agent that can target cancer cells because of its selective uptake via glucose transporters, which are overexpressed in most cancers. The design features of the molecule, its synthesis, its reactivity with DNA, and its toxicity in human glioblastoma cells are reported here. In this molecule, a glucosamine unit, which can facilitate uptake via glucose transporters, is conjugated to one end of a bispyrrole triamide unit, which is known to bind to the minor groove of DNA at A/T-rich regions. A methyl sulfonate moiety is tethered to the other end of the bispyrrole unit to serve as a DNA-methylating agent. This molecule produces exclusively N3-methyladenine adducts upon reaction with DNA and is an order of magnitude more toxic to treatment resistant human glioblastoma cells than streptozotocin is, a Food and Drug Administration-approved, glycoconjugated DNA-methylating drug. Cellular uptake studies using a fluorescent analogue of our molecule provide evidence of uptake via glucose transporters and localization within the nucleus of cells. These results demonstrate the feasibility of our strategy for developing more potent anticancer chemotherapeutics, while minimizing common side effects resulting from off-target damage.


Assuntos
Antineoplásicos Alquilantes/síntese química , Adutos de DNA/biossíntese , DNA de Neoplasias/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicoconjugados/síntese química , Neuroglia/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Alcanossulfonatos/química , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Adutos de DNA/química , Dano ao DNA , Metilação de DNA , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Expressão Gênica , Glucosamina/química , Proteínas Facilitadoras de Transporte de Glucose/genética , Glicoconjugados/metabolismo , Glicoconjugados/farmacologia , Humanos , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Neuroglia/metabolismo , Neuroglia/patologia , Conformação de Ácido Nucleico , Pirróis/química , Estreptozocina/farmacologia
11.
J Virol ; 89(16): 8453-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041285

RESUMO

UNLABELLED: The reassortment of gene segments between influenza viruses increases genomic diversity and plays an important role in viral evolution. We have shown previously that this process is highly efficient within a coinfected cell and, given synchronous coinfection at moderate or high doses, can give rise to ~60 to 70% of progeny shed from an animal host. Conversely, reassortment in vivo can be rendered undetectable by lowering viral doses or extending the time between infections. One might also predict that seeding of transmitted viruses into different sites within the target tissue could limit subsequent reassortment. Given the potential for stochastic factors to restrict reassortment during natural infection, we sought to determine its efficiency in a host coinfected through transmission. Two scenarios were tested in a guinea pig model, using influenza A/Panama/2007/99 (H3N2) virus (wt) and a silently mutated variant (var) thereof as parental virus strains. In the first, coinfection was achieved by exposing a naive guinea pig to two cagemates, one infected with wt and the other with var virus. When such exposure led to coinfection, robust reassortment was typically seen, with 50 to 100% of isolates carrying reassortant genomes at one or more time points. In the second scenario, naive guinea pigs were exposed to a cagemate that had been coinoculated with wt and var viruses. Here, reassortment occurred in the coinoculated donor host, multiple variants were transmitted, and reassortants were prevalent in the recipient host. Together, these results demonstrate the immense potential for reassortment to generate viral diversity in nature. IMPORTANCE: Influenza viruses evolve rapidly under selection due to the generation of viral diversity through two mechanisms. The first is the introduction of random errors into the genome by the viral polymerase, which occurs with a frequency of approximately 10(-5) errors/nucleotide replicated. The second is reassortment, or the exchange of gene segments between viruses. Reassortment is known to occur readily under well-controlled laboratory conditions, but its frequency in nature is not clear. Here, we tested the hypothesis that reassortment efficiency following coinfection through transmission would be reduced compared to that seen with coinoculation. Contrary to this hypothesis, our results indicate that coinfection achieved through transmission supports high levels of reassortment. These results suggest that reassortment is not exquisitely sensitive to stochastic effects associated with transmission and likely occurs in nature whenever a host is infected productively with more than one influenza A virus.


Assuntos
Variação Genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/transmissão , Vírus Reordenados/genética , Animais , Coinfecção/transmissão , Cães , Genótipo , Cobaias , Vírus da Influenza A Subtipo H3N2/fisiologia , Células Madin Darby de Rim Canino , Processos Estocásticos
12.
J Virol ; 86(5): 2882-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22205738

RESUMO

The cytolytic animal virus equine herpesvirus type 1 (EHV-1) was evaluated for its oncolytic potential against five human glioblastoma cell lines. EHV-1 productively infected four of these cell lines, and the degree of infection was positively correlated with glioma cell death. No human major histocompatibility complex class 1 (MHC-I) was detected in the resistant glioma line, while infection of the susceptible glioma cell lines, which expressed human MHC-I, were blocked with antibody to MHC-I, indicating that human MHC-I acts as an EHV-1 entry receptor on glioma cells.


Assuntos
Neoplasias Encefálicas/virologia , Glioblastoma/virologia , Herpesvirus Equídeo 1/fisiologia , Terapia Viral Oncolítica/instrumentação , Vírus Oncolíticos/fisiologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/terapia , Herpesvirus Equídeo 1/genética , Humanos , Vírus Oncolíticos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...