Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Med Phys ; 43(8): 4842, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487902

RESUMO

PURPOSE: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today's modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. METHODS: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. RESULTS: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data points tested. The model was capable of predicting the depth of the maximum dose within 1 mm. Anthropomorphic phantom benchmark testing of modulated and patterned MLCs treatment plans showed agreement to measurement within 3% in target regions using thermoluminescent dosimeters (TLD). Using radiochromic film normalized to TLD, a gamma criteria of 3% of maximum dose and 2 mm DTA was applied with a pass rate of least 85% in the high dose, high gradient, and low dose regions. Finally, recalculations of patient plans using DPM showed good agreement relative to a commercial TPS when comparing dose volume histograms and 2D dose distributions. CONCLUSIONS: A unique analytical source model coupled to the dose planning method Monte Carlo dose calculation code has been modified and validated using basic beam data and anthropomorphic phantom measurement. While this tool can be applied in general use for a particular linac model, specifically it was developed to provide a singular methodology to independently assess treatment plan dose distributions from those clinical institutions participating in National Cancer Institute trials.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada
2.
Phys Med Biol ; 57(9): 2505-15, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22493180

RESUMO

Optically stimulated luminescent dosimeters (OSLDs) are becoming increasingly popular for measuring an absorbed dose in clinical radiotherapy. OSLDs have known energy dependence, and this is accounted for by either calibrating the OSLD with a specific nominal energy, or using a standard energy correction factor to account for differences between the experimental beam photon energy and the photon energy used to establish the OSLD's sensitivity (e.g., (60)Co). This work is typically done under reference conditions (e.g., at d(max)). The impact of variations in photon spectra on the OSLD response is typically ignored for measurement positions that are different than the reference position. We determined that it is generally necessary to apply an additional non-reference energy correction factor to OSLD measurements made at locations that do not correspond to the reference position, particularly for OSLD measurements made out-of-field, where the photon spectra are softer. We determined this energy correction factor for a range of 6 MV photon spectra using two independent methods: Burlin cavity theory and measurements. The non-reference energy correction factor was found to range from 0.97 to 1.00 for in-field measurement locations and from 0.69 to 0.95 for out-of-field measurement locations. The use of a non-reference energy correction factor can improve the accuracy of OSLDs, especially when used out-of-field.


Assuntos
Fenômenos Ópticos , Fótons , Dosimetria Termoluminescente/métodos
3.
J Appl Clin Med Phys ; 13(2): 3707, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22402386

RESUMO

The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking the multi-leaf collimator (MLC) apertures with the photon jaws in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform. Radiation treatment plans for ten thoracic, three pediatric, and three head and neck cancer patients were converted to plans with the jaws tracking each segment's MLC apertures, and compared to the original plans in a commercial radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 (volumes receiving 5, 10 and 20 Gy, respectively) in the cumulative dose-volume histogram for the following structures: total lung minus gross target volume, heart, esophagus, spinal cord, liver, parotids, and brainstem. To validate the accuracy of our beam model, MLC transmission was measured and compared to that predicted by the TPS. The greatest changes between the original and new plans occurred at lower dose levels. In all patients, the reduction in V20 was never more than 6.3% and was typically less than 1%; the maximum reduction in V5 was 16.7% and was typically less than 3%. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1% and, thus, uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. We conclude that the amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT is probably not clinically significant.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Arcada Osseodentária/efeitos da radiação , Radiometria , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias Torácicas/radioterapia , Criança , Relação Dose-Resposta à Radiação , Humanos , Arcada Osseodentária/fisiologia , Dosagem Radioterapêutica , Estudos Retrospectivos
4.
Radiat Oncol ; 7: 19, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22316381

RESUMO

BACKGROUND: For radiotherapy of the head and neck, 5-point mask immobilization is used to stabilize the shoulders. Still, the daily position of the shoulders during treatment may be different from the position in the treatment plan despite correct isocenter setup. The purpose of this study was to determine the interfractional displacement of the shoulders relative to isocenter over the course of treatment and the associated dosimetric effect of this displacement. METHODS: The extent of shoulder displacements relative to isocenter was assessed for 10 patients in 5-point thermoplastic masks using image registration and daily CT-on-rails scans. Dosimetric effects on IMRT and VMAT plans were evaluated in Pinnacle based on simulation CTs modified to represent shoulder shifts between 3 and 15 mm in the superior-inferior, anterior-posterior, and right-left directions. The impact of clinically observed shoulder shifts on the low-neck dose distributions was examined. RESULTS: Shoulder motion was 2-5 mm in each direction on average but reached 20 mm. Superior shifts resulted in coverage loss, whereas inferior shifts increased the dose to the brachial plexus. These findings were generally consistent for both IMRT and VMAT plans. Over a course of observed shifts, the dose to 99% of the CTV decreased by up to 101 cGy, and the brachial plexus dose increased by up to 72 cGy. CONCLUSIONS: he position of the shoulder affects target coverage and critical structure dose, and may therefore be a concern during the setup of head and neck patients, particularly those with low neck primary disease.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Imobilização/métodos , Lesões por Radiação/prevenção & controle , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Ombro/efeitos da radiação , Seguimentos , Humanos , Prognóstico
5.
Phys Med Biol ; 56(23): 7435-47, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22056949

RESUMO

The clinical impact of the Varian Exact Couch on dose, volume coverage to targets and critical structures, and tumor control probability (TCP) has not been described. Thus, we examined their effects on IMRT and arc therapy. Five clinical prostate patients were planned with both 6 MV eight-field IMRT and 6 MV two-arc RapidArc techniques using the Eclipse treatment planning system. These plans neglected treatment couch attenuation, as is a common clinical practice. Dose distributions were then recalculated in Eclipse with the inclusion of the Varian Exact Couch (imaging couch top) and the rails in varying configurations. The changes in dose and coverage were evaluated using the dose-volume histograms from each plan iteration. We used a TCP model to calculate losses in tumor control resulting from not accounting for the couch top and rails. We also verified dose measurements in a phantom. Failure to account for the treatment couch and rails resulted in clinically unacceptable dose and volume coverage losses to the targets for both IMRT and RapidArc. The couch caused average prescription dose losses (relative to plans that ignored the couch) to the prostate of 4.2% and 2.0% for IMRT with the rails out and in, respectively, and 3.2% and 2.9% for RapidArc with the rails out and in, respectively. On average, the percentage of the target covered by the prescribed dose dropped to 35% and 84% for IMRT (rails out and in, respectively) and to 18% and 17% for RapidArc (rails out and in, respectively). The TCP was also reduced by as much as 10.5% (6.3% on average). Dose and volume coverage losses for IMRT plans were primarily due to the rails, while the imaging couch top contributed most to losses for RapidArc. Both the couch top and rails contribute to dose and coverage losses that can render plans clinically unacceptable. A follow-up study we performed found that the less attenuating unipanel mesh couch top available with the Varian Exact couch does not cause a clinically impactful loss of dose or coverage for IMRT but still causes an unacceptable loss for RapidArc. Therefore, both the imaging or mesh couch top and the rails should be accounted for in arc therapy. The imaging couch top should be accounted for in IMRT treatment planning or the mesh top can be used, which would not need to be accounted for, and the rails should be moved to avoid the beams during treatment.


Assuntos
Radioterapia de Intensidade Modulada/instrumentação , Humanos , Masculino , Modelos Biológicos , Probabilidade , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes
6.
Med Phys ; 38(8): 4546-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21928626

RESUMO

PURPOSE: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. METHODS: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semi-logarithmic (exponential) and linear interpolation]. RESULTS: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R2 > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. CONCLUSIONS: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).


Assuntos
Radiografia/estatística & dados numéricos , Fenômenos Biofísicos , Simulação por Computador , Feminino , Humanos , Mamografia/estatística & dados numéricos , Modelos Teóricos , Radiometria , Espalhamento de Radiação , Tomografia Computadorizada por Raios X/estatística & dados numéricos
7.
Med Phys ; 38(7): 4422-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21859043

RESUMO

PURPOSE: The conditions under which vendor performance criteria for digital radiography systems are obtained do not adequately simulate the conditions of actual clinical imaging with respect to radiographic technique factors, scatter production, and scatter control. Therefore, the relationship between performance under ideal conditions and performance in clinical practice remains unclear. Using data from a large complement of systems in clinical use, the authors sought to develop a method to establish expected performance criteria for digital flat-panel radiography systems with respect to signal-to-noise ratio (SNR) versus detector exposure under clinical conditions for thoracic imaging. METHODS: The authors made radiographic exposures of a patient-equivalent chest phantom at 125 kVp and 180 cm source-to-image distance. The mAs value was modified to produce exposures above and below the mAs delivered by automatic exposure control. Exposures measured free-in-air were corrected to the imaging plane by the inverse square law, by the attenuation factor of the phantom, and by the Bucky factor of the grid for the phantom, geometry, and kilovolt peak. SNR was evaluated as the ratio of the mean to the standard deviation (SD) of a region of interest automatically selected in the center of each unprocessed image. Data were acquired from 18 systems, 14 of which were tested both before and after gain and offset calibration. SNR as a function of detector exposure was interpolated using a double logarithmic function to stratify the data into groups of 0.2, 0.5, 1.0, 2.0, and 5.0 mR exposure (1.8, 4.5, 9.0, 18, and 45 microGy air KERMA) to the detector. RESULTS: The mean SNR at each exposure interval after calibration exhibited linear dependence on the mean SNR before calibration (r2=0.9999). The dependence was greater than unity (m = 1.101 +/- 0.006), and the difference from unity was statistically significant (p <0.005). The SD of mean SNR after calibration also exhibited linear dependence on the SD of the mean SNR before calibration (r2 = 0.9997). This dependence was less than unity (m = 0.822 +/- 0.008), and the difference from unity was also statistically significant (p < 0.005). Systems were separated into two groups: systems with a precalibration SNR higher than the median SNR (N = 7), and those with a precalibration SNR lower than the median SNR (N= 7). Posthoc analysis was performed to correct for expanded false positive results. After calibration, the authors noted differences in mean SNR within both high and low groups, but these differences were not statistically significant at the 0.05 level. SNR data from four additional systems and one system from those previously tested after replacement of its detector were compared to the 95% confidence intervals (CI) calculated from the postcalibration SNR data. The comparison indicated that four of these five systems were consistent with the CI derived from the previously tested 14 systems after calibration. Two systems from the paired group that remained outside the CI were studied further. One system was remedied with a grid replacement. The nonconformant behavior of the other system was corrected by replacing the image receptor. CONCLUSIONS: Exposure-dependent SNR measurements under conditions simulating thoracic imaging allowed us to develop criteria for digital flat-panel imaging systems from a single manufacturer. These measurements were useful in identifying systems with discrepant performance, including one with a defective grid, one with a defective detector, and one that had not been calibrated for gain and offset. The authors also found that the gain and offset calibration reduces variation in exposure-dependent SNR performance among the systems.


Assuntos
Artefatos , Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/normas , Ecrans Intensificadores para Raios X/normas , Calibragem , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Texas
8.
Med Phys ; 38(1): 34-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21361172

RESUMO

PURPOSE: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. METHODS: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. RESULTS: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. CONCLUSIONS: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.


Assuntos
Equipamentos e Provisões Elétricas , Falha de Equipamento , Nêutrons/efeitos adversos , Tomografia Computadorizada por Raios X/instrumentação , Método de Monte Carlo , Proteção Radiológica
9.
J Appl Clin Med Phys ; 11(4): 3294, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21081889

RESUMO

In this work, we develop and test a matchline dosimetry analysis tool (MDAT) to examine the dose distribution within the abutment region of two or more adjoining radiotherapy fields that employ different blocking mechanisms and geometries in forming a match. This objective and quantitative tool uses calibrated radiographic film to measure the dose in the abutment region, and uses a frequency distribution of area versus dose (a dose-area histogram) to visualize the spatial dose distribution. We tested the MDAT's clinical applicability and parameters by evaluating the dose between adjacent photon fields incident on a flat phantom using field-matching techniques employing collimator-jaw and multileaf collimator (MLC) configurations. Additionally, we evaluated the dose in the abutment regions of four different clinical tangential-breast and supraclavicular matching techniques using various combinations of collimator and MLC matches. Using the MDAT tool, it was deter-mined that a 1 cm abutment region width (centered about the theoretical matchline between fields) is the most appropriate width to determine dose homogeneity in a field matching region. Using the MDAT, both subtle and large differences were seen between fields that used MLCs to form the match, compared to flat edge devices such as collimators and external cerrobend blocks. We conclude that the MDAT facilitates a more precise evaluation of the distribution of dose within the region of abutment of radiotherapy fields.


Assuntos
Neoplasias da Mama/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador , Clavícula/efeitos da radiação , Feminino , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica
10.
Med Phys ; 36(11): 5000-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19994509

RESUMO

PURPOSE: Four-dimensional (4D) dose calculation algorithms, which explicitly incorporate respiratory motion in the calculation of doses, have the potential to improve the accuracy of dose calculations in thoracic treatment planning; however, they generally require greater computing power and resources than currently used for three-dimensional (3D) dose calculations. The purpose of this work was to quantify the increase in accuracy of 4D dose calculations versus 3D dose calculations. METHODS: The accuracy of each dose calculation algorithm was assessed using measurements made with two phantoms. Specifically, the authors used a rigid moving anthropomorphic thoracic phantom and an anthropomorphic thoracic phantom with a deformable lung insert. To incorporate a clinically relevant range of scenarios, they programed the phantoms to move and deform with two motion patterns: A sinusoidal motion pattern and an irregular motion pattern that was extracted from an actual patient's breathing profile. For each combination of phantom and motion pattern, three plans were created: A single-beam plan, a multiple-beam plan, and an intensity-modulated radiation therapy plan. Doses were calculated using 4D dose calculation methods as well as conventional 3D dose calculation methods. The rigid moving and deforming phantoms were irradiated according to the three treatment plans and doses were measured using thermoluminescent dosimeters (TLDs) and radiochromic film. The accuracy of each dose calculation algorithm was assessed using measured-to-calculated TLD doses and a gamma analysis. RESULTS: No significant differences were observed between the measured-to-calculated TLD ratios among 4D and 3D dose calculations. The gamma results revealed that 4D dose calculations had significantly greater percentage of pixels passing the 5%/3 mm criteria than 3D dose calculations. CONCLUSIONS: These results indicate no significant differences in the accuracy between the 4D and the 3D dose calculation methods inside the gross tumor volume. On the other hand, the film results demonstrated that the 4D dose calculations provided greater accuracy than 3D dose calculations in heterogeneous dose regions. The increase in accuracy of the 4D dose calculations was evident throughout the planning target volume.


Assuntos
Algoritmos , Movimento (Física) , Imagens de Fantasmas , Fótons , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia/métodos , Dosimetria Fotográfica , Humanos , Modelos Biológicos , Periodicidade , Radiometria , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Respiração
11.
Technol Cancer Res Treat ; 8(6): 413-23, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19925025

RESUMO

The use of an amorphous silicon electronic portal imaging device (EPID) and Monte Carlo calculations were investigated for pretreatment fluence verification in intensity modulated stereotactic radiotherapy (IMSRT). Monte Carlo calculations were performed using BEAM, a general purpose Monte Carlo code to simulate radiation beams from radiotherapy units. The dose distribution to the EPID phosphor was calculated by BEAM and then converted to pixel value using a pixel calibration curve. The calibration correlated calculated pixel dose to the measured pixel value for a range of open fields. Points within the region bounded by the photon jaws were extracted for comparison. Criteria for successful verification were 5% local percent difference in high dose regions, 1 mm distance to agreement in high gradient regions, or 2% of the Monte Carlo calculated central axis pixel value in low dose regions. Software was written to quantitatively compare the measured and calculated EPID images. Successful verification of the modulated field required that >or=95% of compared points fall within the comparison criteria. Dose response of the EPID was found to be linear with Monte Carlo calculated doses over the dose ranges examined in this work Comparison of the measured and calculated EPID dose distributions showed good agreement with 97% of the points passing criteria. The sensitivity of the methodology to detect field shaping errors was tested by introducing positioning errors in segments of the modulated field. These sensitivity tests indicate that the comparison software designed for this work can detect a 1 mm positioning error in a single segment of the composite IMSRT field. It should be noted, however, that the work presented here is a proof of concept and currently not a clinically viable QA tool. It represents a limited evaluation using a single IMSRT field, and verification of additional fields will be required for a comprehensive evaluation of the described methods before broad conclusions can be drawn. Additionally, the results of this work are subject to the comparison criteria that were used. Clinical implementation of the proposed technique should be evaluated for the specific institutional criteria where it will be employed.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Calibragem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Fótons , Doses de Radiação , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Software
12.
Med Phys ; 36(8): 3438-47, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19746777

RESUMO

Recent work in the area of thoracic treatment planning has been focused on trying to explicitly incorporate patient-specific organ motion in the calculation of dose. Four-dimensional (4D) dose calculation algorithms have been developed and incorporated in a research version of a commercial treatment planning system (Pinnacle3, Philips Medical Systems, Milpitas, CA). Before these 4D dose calculations can be used clinically, it is necessary to verify their accuracy with measurements. The primary purpose of this study therefore was to evaluate and validate the accuracy of a 4D dose calculation algorithm with phantom measurements. A secondary objective was to determine whether the performance of the 4D dose calculation algorithm varied between different motion patterns and treatment plans. Measurements were made using two phantoms: A rigid moving phantom and a deformable phantom. The rigid moving phantom consisted of an anthropomorphic thoracic phantom that rested on a programmable motion platform. The deformable phantom used the same anthropomorphic thoracic phantom with a deformable insert for one of the lungs. Two motion patterns were investigated for each phantom: A sinusoidal motion pattern and an irregular motion pattern extracted from a patient breathing profile. A single-beam plan, a multiple-beam plan, and an intensity-modulated radiation therapy plan were created. Doses were calculated in the treatment planning system using the 4D dose calculation algorithm. Then each plan was delivered to the phantoms and delivered doses were measured using thermoluminescent dosimeters (TLDs) and film. The measured doses were compared to the 4D-calculated doses using a measured-to-calculated TLD ratio and a gamma analysis. A relevant passing criteria (3% for the TLD and 5% /3 mm for the gamma metric) was applied to determine if the 4D dose calculations were accurate to within clinical standards. All the TLD measurements in both phantoms satisfied the passing criteria. Furthermore, 42 of the 48 evaluated films fulfilled the passing criteria. All films that did not pass the criteria were from the rigid phantom moving with irregular motion. The author concluded that if patient breathing is reproducible, the 4D dose calculations are accurate to within clinically acceptable standards. Furthermore, they found no statistically significant differences in the performance of the 4D dose calculation algorithm between treatment plans.


Assuntos
Fótons/uso terapêutico , Doses de Radiação , Radiometria/métodos , Dosimetria Fotográfica , Humanos , Movimento , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Dosimetria Termoluminescente , Tórax/efeitos da radiação
13.
Med Phys ; 36(5): 1494-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19544765

RESUMO

An anthropomorphic pediatric phantom (5-yr-old equivalent) was used to determine organ doses at specific surface and internal locations resulting from computed tomography (CT) scans. This phantom contains four different tissue-equivalent materials: Soft tissue, bone, brain, and lung. It was imaged on a 64-channel CT scanner with three head protocols (one contiguous axial scan and two helical scans [pitch = 0.516 and 0.984]) and four chest protocols (one contiguous axial scan and three helical scans [pitch = 0.516, 0.984, and 1.375]). Effective mA s [= (tube current x rotation time)/pitch] was kept nearly constant at 200 effective mA s for head and 290 effective mA s for chest protocols. Dose measurements were acquired using thermoluminescent dosimeter powder in capsules placed at locations internal to the phantom and on the phantom surface. The organs of interest were the brain, both eyes, thyroid, sternum, both breasts, and both lungs. The organ dose measurements from helical scans were lower than for contiguous axial scans by 0% to 25% even after adjusting for equivalent effective mA s. There was no significant difference (p > 0.05) in organ dose values between the 0.516 and 0.984 pitch values for both head and chest scans. The chest organ dose measurements obtained at a pitch of 1.375 were significantly higher than the dose values obtained at the other helical pitches used for chest scans (p < 0.05). This difference was attributed to the automatic selection of the large focal spot due to a higher tube current value. These findings suggest that there may be a previously unsuspected radiation dose benefit associated with the use of helical scan mode during computed tomography scanning.


Assuntos
Carga Corporal (Radioterapia) , Modelos Biológicos , Radiometria/métodos , Tomografia Computadorizada Espiral/métodos , Contagem Corporal Total/métodos , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Masculino , Doses de Radiação
14.
Acad Radiol ; 16(2): 150-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19124100

RESUMO

RATIONALE AND OBJECTIVES: The impact of varying image acquisition parameters on the precision of measurements using quantitative computed tomography is currently based on studies performed before the advent of helical image acquisition and multidetector-row scanners. The aim of this study was to evaluate helical multidetector-row quantitative computed tomography to determine the factors contributing to the overall precision of measurements on quantitative computed tomography conducted using current vintage computed tomographic (CT) scanners. MATERIALS AND METHODS: The effects of CT protocol parameters (x-ray tube voltage and current, pitch, gantry rotation speed, detector configuration, table height, and reconstruction algorithm) and short-term scanner variation were examined on two commercially available quantitative CT (QCT) systems (ie, a combination of reference phantoms and analysis software) using seven multidetector-row CT scanners (available from a single vendor) operated in helical mode. Combined with simulated patient repositioning using three ex vivo spine specimens, precision (coefficient of variation) estimates were made on the basis of three scenarios: "best case," "routine case," and "worst case." RESULTS: The overall best-case QCT precision was 1.4%, provided that no changes were permitted to the bone mineral density (BMD) scan protocol. Routine-case examination (with a BMD reference phantom in place) that permitted some variation in the x-ray tube current and table speed produced a precision of 1.8%. Without any constraints on the clinical QCT examinations, the worst-case precision was estimated at 3.6%. CONCLUSIONS: Although small in appearance, these errors are for single time points and may increase substantially when monitoring changes through QCT measurements over several time points. This calls for increased caution and attention to detail whenever using helical multidetector-row quantitative computed tomography for the assessment of BMD change.


Assuntos
Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada Espiral/instrumentação , Tomografia Computadorizada Espiral/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Radiother Oncol ; 91(1): 132-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19147246

RESUMO

PURPOSE: To evaluate the photon and neutron out-of-field dose equivalents from 6- and 18-MV intensity-modulated radiation therapy (IMRT) and to investigate the impact of the differences on the associated risk of induced second malignancy using a Monte Carlo model. METHODS AND MATERIALS: A Monte Carlo model created with MCNPX was used to calculate the out-of-field photon dose and neutron dose equivalent from simulated IMRT of the prostate conducted at beam energies of 6 and 18MV. The out-of-field dose equivalent was calculated at the locations of sensitive organs in an anthropomorphic phantom. Based on these doses, the risk of secondary malignancy was calculated based on organ-, gender-, and age-specific risk coefficients for a 50-year-old man. RESULTS: The Monte Carlo model predicted much lower neutron dose equivalents than had been determined previously. Further analysis illuminated the large uncertainties in the neutron dose equivalent and demonstrated the need for better determination of this value, which plays a large role in estimating the risk of secondary malignancies. The Monte Carlo calculations found that the differences in the risk of secondary malignancies conferred by high-energy IMRT versus low-energy IMRT are minimal and insignificant, contrary to prior findings. CONCLUSIONS: The risk of secondary malignancy associated with high-energy radiation therapy may not be as large as previously reported, and likely should not deter the use of high-energy beams. However, the large uncertainties in neutron dose equivalents at specific locations within the patient warrant further study so that the risk of secondary cancers can be estimated with greater accuracy.


Assuntos
Método de Monte Carlo , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/fisiopatologia , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada , Humanos , Masculino , Nêutrons , Fótons , Neoplasias da Próstata/fisiopatologia , Dosagem Radioterapêutica , Risco
16.
Phys Med Biol ; 54(1): 105-16, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19075360

RESUMO

The purpose of this paper was to study the source model for a Monte Carlo simulation of electron beams from a medical linear accelerator. In a prior study, a non-divergent Gaussian source with a full-width at half-maximum (FWHM) of 0.15 cm was successful in predicting relative dose distributions for electron beams with applicators. However, for large fields with the applicator removed, discrepancies were found between measured and calculated profiles, particularly in the shoulder region. In this work, the source was changed to a divergent Gaussian spatial distribution and the FWHM parameter was varied to produce better agreement with measured data. The influence of the FWHM source parameter on profiles was observed at multiple locations in the simulation geometry including in-air fluence profiles at a 95 cm source-to-surface distance (SSD), percent depth dose profiles and off-axis profiles (OARs) in a water phantom for two SSDs, 80 and 100 cm. For a 6 MeV 40 x 40 cm(2) OAR profile, discrepancies in the shoulder region were reduced from 15% to 4% using a FWHM value of 0.45 cm. The optimal FWHM values for the other energies were 0.45 cm for 9 MeV, 0.22 for 12 MeV, 0.25 for 16 MeV and 0.2 cm for 20 MeV. Although this range of values was larger than measured focal spot sizes reported by other researchers, using the increased FWHM values improved the fit at most locations in the simulation geometry, giving confidence that the model could be used with a variety of SSDs and field sizes.


Assuntos
Elétrons , Método de Monte Carlo , Modelos Químicos , Imagens de Fantasmas , Probabilidade , Água/química , Raios X
17.
Med Phys ; 34(9): 3489-99, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17926952

RESUMO

As cancer therapy becomes more efficacious and patients survive longer, the potential for late effects increases, including effects induced by radiation dose delivered away from the treatment site. This out-of-field radiation is of particular concern with high-energy radiotherapy, as neutrons are produced in the accelerator head. We recently developed an accurate Monte Carlo model of a Varian 2100 accelerator using MCNPX for calculating the dose away from the treatment field resulting from low-energy therapy. In this study, we expanded and validated our Monte Carlo model for high-energy (18 MV) photon therapy, including both photons and neutrons. Simulated out-of-field photon doses were compared with measurements made with thermoluminescent dosimeters in an acrylic phantom up to 55 cm from the central axis. Simulated neutron fluences and energy spectra were compared with measurements using moderated gold foil activation in moderators and data from the literature. The average local difference between the calculated and measured photon dose was 17%, including doses as low as 0.01% of the central axis dose. The out-of-field photon dose varied substantially with field size and distance from the edge of the field but varied little with depth in the phantom, except at depths shallower than 3 cm, where the dose sharply increased. On average, the difference between the simulated and measured neutron fluences was 19% and good agreement was observed with the neutron spectra. The neutron dose equivalent varied little with field size or distance from the central axis but decreased with depth in the phantom. Neutrons were the dominant component of the out-of-field dose equivalent for shallow depths and large distances from the edge of the treatment field. This Monte Carlo model is useful to both physicists and clinicians when evaluating out-of-field doses and associated potential risks.


Assuntos
Simulação por Computador , Método de Monte Carlo , Nêutrons , Aceleradores de Partículas , Fótons , Feminino , Ouro/química , Humanos
18.
Int J Radiat Oncol Biol Phys ; 68(4): 1265-71, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17637398

RESUMO

PURPOSE: The significance of risk estimates for fatal secondary malignancies caused by out-of-field radiation exposure remains unresolved because the uncertainty in calculated risk estimates has not been established. This work examines the uncertainty in absolute risk estimates and in the ratio of risk estimates between different treatment modalities. METHODS AND MATERIALS: Clinically reasonable out-of-field doses and calculated risk estimates were taken from the literature for several prostate treatment modalities, including intensity-modulated radiotherapy (IMRT), and were recalculated using the most recent risk model. The uncertainties in this risk model and uncertainties in the linearity of the dose-response model were considered in generating 90% confidence intervals for the uncertainty in the absolute risk estimates and in the ratio of the risk estimates. RESULTS: The absolute risk estimates of fatal secondary malignancy were associated with very large uncertainties, which precluded distinctions between the risks associated with the different treatment modalities considered. However, a much smaller confidence interval exists for the ratio of risk estimates, and this ratio between different treatment modalities may be statistically significant when there is an effective dose equivalent difference of at least 50%. Such a difference may exist between clinically reasonable treatment options, including 6-MV IMRT versus 18-MV IMRT for prostate therapy. CONCLUSION: The ratio of the risk between different treatment modalities may be significantly different. Consequently risk models and associated risk estimates may be useful and meaningful for evaluating different treatment options. The calculated risk of secondary malignancy should be considered in the selection of an optimal treatment plan.


Assuntos
Neoplasias Induzidas por Radiação/etiologia , Intervalos de Confiança , Relação Dose-Resposta à Radiação , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/efeitos adversos , Medição de Risco , Incerteza
19.
J Appl Clin Med Phys ; 8(2): 61-75, 2007 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-17592466

RESUMO

In the present work, we investigated the accuracy of the electron pencil-beam redefinition algorithm (PBRA) in calculating central-axis percent depth dose in water for rectangular fields. The PBRA energy correction factor C(E) was determined so that PBRA-calculated percent depth dose best matched the percent depth dose measured in water. The hypothesis tested was that a method can be implemented into the PBRA that will enable the algorithm to calculate central-axis percent depth dose in water at a 100-cm source-to-surface distance (SSD) with an accuracy of 2% or 1-mm distance to agreement for rectangular field sizes > or = 2 x 2 cm. Preliminary investigations showed that C(E), determined using a single percent depth dose for a large field (that is, having side-scatter equilibrium), was insufficient for the PBRA to accurately calculate percent depth dose for all square fields > or = 2 x 2 cm. Therefore, two alternative methods for determining C(E) were investigated. In Method 1, C(E), modeled as a polynomial in energy, was determined by fitting the PBRA calculations to individual rectangular-field percent depth doses. In Method 2, C(E) for square fields, described by a polynomial in both energy and side of square W [that is, C = C(E,W)], was determined by fitting the PBRA calculations to measured percent depth dose for a small number of square fields. Using the function C(E,W), C(E) for other square fields was determined, and C(E) for rectangular field sizes was determined using the geometric mean of C(E) for the two measured square fields of the dimension of the rectangle (square root method). Using both methods, PBRA calculations were evaluated by comparison with measured square-field and derived rectangular-field percent depth doses at 100-cm SSD for the Siemens Primus radiotherapy accelerator equipped with a 25 x 25-cm applicator at 10 MeV and 15 MeV. To improve the fit of C(E) and C(E,W) to the electron component of percent depth dose, it was necessary to modify the PBRA's photon depth dose model to include dose buildup. Results showed that, using both methods, the PBRA was able to predict percent depth dose within criteria for all square and rectangular fields. Results showed that second- or third-order polynomials in energy (Methods 1 and 2) and in field size (Method 2) were typically required. Although the time for dose calculation using Method 1 is approximately twice that using Method 2, we recommend that Method 1 be used for clinical implementation of the PBRA because it is more accurate (most measured depth doses predicted within approximately 1%) and simpler to implement.


Assuntos
Algoritmos , Elétrons/uso terapêutico , Modelos Biológicos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Carga Corporal (Radioterapia) , Simulação por Computador , Humanos , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Espalhamento de Radiação
20.
Med Phys ; 34(2): 489-98, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17388166

RESUMO

Current protocols for the measurement of proton dose focus on measurements under reference conditions; methods for measuring dose under patient-specific conditions have not been standardized. In particular, it is unclear whether dose in patient-specific fields can be determined more reliably with or without the presence of the patient-specific range compensator. The aim of this study was to quantitatively assess the reliability of two methods for measuring dose per monitor unit (DIMU) values for small-field treatment portals: one with the range compensator and one without the range compensator. A Monte Carlo model of the Proton Therapy Center-Houston double-scattering nozzle was created, and estimates of D/MU values were obtained from 14 simulated treatments of a simple geometric patient model. Field-specific D/MU calibration measurements were simulated with a dosimeter in a water phantom with and without the range compensator. D/MU values from the simulated calibration measurements were compared with D/MU values from the corresponding treatment simulation in the patient model. To evaluate the reliability of the calibration measurements, six metrics and four figures of merit were defined to characterize accuracy, uncertainty, the standard deviations of accuracy and uncertainty, worst agreement, and maximum uncertainty. Measuring D/MU without the range compensator provided superior results for five of the six metrics and for all four figures of merit. The two techniques yielded different results primarily because of high-dose gradient regions introduced into the water phantom when the range compensator was present. Estimated uncertainties (approximately 1 mm) in the position of the dosimeter in these regions resulted in large uncertainties and high variability in D/MU values. When the range compensator was absent, these gradients were minimized and D/MU values were less sensitive to dosimeter positioning errors. We conclude that measuring D/MU without the range compensator present provides more reliable results than measuring it with the range compensator in place.


Assuntos
Algoritmos , Modelos Biológicos , Terapia com Prótons , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Simulação por Computador , Análise de Falha de Equipamento/métodos , Humanos , Radiometria/instrumentação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia Conformacional/instrumentação , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA