Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(18): 6958-6967, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38662230

RESUMO

Continuous square wave voltammetry (cSWV) is a technique that enables the continuous collection of current data (at 100 kHz) to maximize the information content obtainable from a single voltammetric sweep. This data collection procedure results in the generation of multiple voltammograms corresponding to different effective square wave frequencies. The application of cSWV brings significant benefits to electrochemical aptamer-based (E-AB) sensors. The E-AB sensor platform permits continuous real-time monitoring of small biological molecules. Traditionally, E-AB sensors report only on changes in analyte concentration rather than absolute quantification in matrices when basal concentrations are not known a priori. This is because they exhibit a voltammetric peak current even in the absence of a target. However, using a dual-frequency approach, calibration-free sensing can be performed effectively, eliminating the sensor-to-sensor variation by taking ratiometric current responses obtained at two different frequencies from two different voltammetric sweeps. In employing our approach, cSWV provides a great advantage over the conventionally used square wave voltammetry since the required voltammograms are collected with a single sweep, which improves the temporal resolution of the measurement when considering the current at multiple frequencies for improved accuracy and reduced surface interrogation. Moreover, we show here that using cSWV provides significantly improved concentration predictions. E-AB sensors sensitive to ATP and tobramycin were interrogated across a wide range of concentrations. With this approach, cSWV allowed us to estimate the target concentration, retaining up to an ±5% error of the expected concentration when tested in buffer and complex media.

2.
Langmuir ; 40(13): 7234-7241, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498453

RESUMO

Ion channel probes, as one of the ion channel platforms, provide an appealing opportunity to perform localized detection with a high precision level. These probes come basically in two classes: glass and metal. While the glass-based probes showed the potential to be employed for molecular sensing and chemical imaging, these probes still suffer from limited resolution and lack of control over protein insertion. On the other hand, metal-based nanoneedle probes (gold and silver) have been recently developed to allow reducing probe dimensions to the nanoscale geometry. More specifically, silver probes are preferable owing to their ability to mitigate the channel current decay observed with gold probes and provide a stable DC channel current. However, there are still some challenges related to the probe design and bilayer curvature that render such probes insensitive to small changes in the tip-substrate distance. Herein, we introduce two main pathways to control the probe-bilayer architecture; the first is by altering the probe shape and geometry during the fabrication process of silver probes. The second pathway is by altering the surface characteristics of the silver probe via an electrophoretic deposition process. Our findings reveal that varying the electrochemical etching parameters results in different probe geometries and producing sharper tips with a 2-fold diameter reduction. In addition, the electrophoretic deposition of a cathodic paint on the silver nanoneedle surface led to a miniaturized exposed silver tip that enables the formation of a confined bilayer. We further investigated the characteristics of bilayers supported on both the sharper nanoneedles and the HSR-coated silver probes produced by controlling the etching conditions and electrodeposition process, respectively. We believe this work paves the way to rationally design silver nanoneedle ion channel probes, which are well suited for localized molecular sensing and chemical imaging.

3.
Anal Chem ; 96(12): 4800-4808, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470344

RESUMO

Studying the electrochemical response of single nanoparticles at an electrode surface gives insight into the dynamic and stochastic processes that occur at the electrode interface. Herein, we investigated single platinum nanoparticle collision dynamics and type (elastic vs inelastic) at gold electrode surfaces modified with self-assembled monolayers (SAMs) of varying terminal chemistries. Collision events are measured via the faradaic current from catalytic reactions at the Pt surface. By changing the terminal, solution-facing group of a thiolate monolayer, we observed the effect of hydrophobicity at the solution-electrode interface on single-particle collisions by employing either a hydrophobic -CH3 terminal group (1-hexanethiol), a hydrophilic -OH terminal group (6-mercaptohexanol), or an equimolar mixture of the two. Changes in the terminal group lead to alterations in collision-induced current magnitude, collisional frequency, and the distinct shape of the collision event current transient. The effects of the terminal group of the SAM were probed by measuring quantitative differences in the events monitored through both the hydrogen evolution reaction (HER) and hydrazine oxidation. In both cases, a platinum nanoparticle (PtNP) favors adsorption to bare and hydrophilic surfaces but demonstrates elastic collision behavior when it collides with a hydrophobic surface. In the case of a mixed monolayer, distinct characteristics of hydrophobic and hydrophilic surfaces are observed. We report how single nanoparticle collisions can reveal nanoscale surface heterogeneity and can be used to manipulate the nature of single-particle interactions on an electrode surface by functionalized self-assembled monolayers.

4.
ACS Sens ; 8(12): 4521-4530, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38104257

RESUMO

Microscale electrodes offer the advantages of increased mass transport rates, high sensitivity, and rapid measurement capabilities. Fabricating electrochemical aptamer-based (E-AB) sensors on these electrode platforms opens new applications to chemical and biological sensing but has remained challenging due to low signal-to-noise ratios and monolayer instability. In this article, we report the development and characterization of E-AB sensors on a gold microelectrode platform (∼500 nm radius). To overcome the small current response, we modified the electrodes by growing nanostructures via electrodeposition. We interrogated the sensors with two different electroanalytical techniques, square wave voltammetry (SWV) and intermittent pulse voltammetry (IPA), to measure the representative response of an ATP sensor and determine aptamer-target binding and dissociation time scales. We find robust and stable sensor performance with an increased response rate over sensors fabricated on macroscale electrodes. These results demonstrate that sensors developed on this microelectrode platform can be employed for enhanced spatiotemporal resolution measurements in chemical and biological environments.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Microeletrodos , Ouro
5.
ECS Sens Plus ; 2(4): 042401, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38152504

RESUMO

Electrochemical, aptamer-based (E-AB) sensors provide a generalizable strategy to quantitatively detect a variety of targets including small molecules and proteins. The key signaling attributes of E-AB sensors (sensitivity, selectivity, specificity, and reagentless and dynamic sensing ability) make them well suited to monitor dynamic processes in complex environments. A key bioanalytical challenge that could benefit from the detection capabilities of E-AB sensors is that of cell signaling, which involves the release of molecular messengers into the extracellular space. Here, we provide a perspective on why E-AB sensors are suited for this measurement, sensor requirements, and pioneering examples of cellular signaling measurements.

6.
ACS Sens ; 8(12): 4504-4511, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38033269

RESUMO

The ability to monitor dynamic changes in neuropeptide Y (NPY) levels in complex environments can have an impact on many fields, including neuroscience and immunology. Here, we describe the development of an electrochemical, aptamer-based (E-AB) sensor for the dynamic (reversible) measurement of physiologically relevant (nanomolar) concentrations of neuropeptide Y. The E-AB sensors are fabricated using a previously described 80 nucleotide aptamer1 reported to specifically bind NPY with a binding affinity Kd = 0.3 ± 0.2 uM. We investigated two redox tag placement locations on the aptamer sequence (terminal vs internal) and various sensor fabrication and interrogation parameters to tune the performance of the resulting sensor. The best-performing sensor architecture displayed a physiologically relevant dynamic range (nM) and low limit of detection and is selective among competitors and similar molecules. The development of this sensor accomplishes two breakthroughs: first, the development of a nonmicrofluidic aptamer-based electrochemical sensor that can detect NPY on a physiologically relevant (seconds to minutes) time scale and across a relevant concentration range; second, the expansion of the range of molecules for which an electrochemical, aptamer-based sensor can be used.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neuropeptídeo Y/metabolismo , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Oxirredução
7.
ACS Meas Sci Au ; 3(1): 1-9, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36817008

RESUMO

Square wave voltammetry (SWV) is a voltammetric technique for measuring Faradaic current while minimizing contributions from non-Faradaic processes. In square wave voltammetry, the potential waveform applied to a working electrode and the current sampling protocols followed are designed to minimize contributions from non-Faradaic processes (i.e., double layer charging) to improve voltammetric sensitivity. To achieve this, the current is measured at the end of each forward and reverse potential pulse after allowing time for non-Faradaic currents to decay exponentially. A consequence of sampling current at the end of a potential pulse is that the current data from the preceding time of the potential pulse are discarded. These discarded data can provide information about the non-Faradaic contributions as well as information about the redox system including charge transfer rates. In this paper, we introduce continuous square wave voltammetry (cSWV), which utilizes the continuous collection of current to maximize the information content obtainable from a single voltammetry sweep eliminating the need for multiple scans. cSWV enables acquiring a multitude of voltammograms corresponding to various frequencies and, thus, different scan rates from a single sweep. An application that benefits significantly from cSWV is conformation switching, functional nucleic acid sensors. We demonstrate the utility of cSWV on two representative small molecules targeting electrochemical, aptamer-based sensors. Moreover, we show that cSWV provides comparable results to those obtained from traditional square wave voltammetry, but with cSWV, we are able to acquire dynamic information about the sensor surfaces enabling rapid calibration and optimization of sensing performance. We also demonstrate cSWV on soluble redox markers. cSWV can potentially become a mainstay technique in the field of conformation switching sensors.

8.
IEEE Trans Biomed Eng ; 70(3): 824-830, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36063526

RESUMO

Electrochemical aptamer-based sensors (EABs) using self-assembled monolayers on gold working-electrodes have now been in-vivo demonstrated for multiple-analytes, demonstrating their sensitivity and specificity even in a continuous sensing format. However, longevity has been demonstrated for only 24 hours and sensitivity has been challenging for highly dilute analytes (nM regime). A novel approach is reported here using electrochemical aptamer-based sensing that is not covalently-bound to a gold-working electrode but where aptamers are freely mobile in solution. This alternative approach has the potential to improve longevity by reducing electrode surface degradation and improving sensitivity using aptamer binding constructs that are not available for aptamers when covalently bound to the electrode. Specifically, a molecular-beacon (fluorescent) cortisol aptamer was adapted into an amperometry solution-phase cortisol EAB sensor, demonstrating ∼5% signal gain starting at only 10 nM and a saturated signal gain of ∼70% at several µM. A robust signal was achieved due to use of methylene-blue redox-tagged aptamer that was measured through amperometry with interdigitated electrodes. While this result demonstrates the basic feasibility of solution-phase EAB sensors, the result also required a self-assembled monolayer alkylthiolate blocking-layer on the gold working electrode which restricts potential device longevity. These results cumulatively suggest that initial significance of solution-phase EAB sensors may be strongest for point-of-care type testing applications and further development would be required for long-lasting continuous sensing applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Hidrocortisona , Técnicas Biossensoriais/métodos , Eletrodos , Ouro
9.
J Phys Chem B ; 126(48): 10111-10119, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36395597

RESUMO

Ion channel proteins showed great promise in the field of nanopore sensing and molecular flux imaging applications due to the atomic-level precision of the pore size and a high signal-to-noise ratio. More specifically, ion channel probes, where the protein channels are integrated at the end of a solid probe, can achieve highly localized detection. Metal probe materials such as gold and silver have been developed to support lipid bilayers and enable the use of smaller probes, or nanoneedles, compared to more traditional glass micropipette ion channel probes. Silver probes are preferable because they support sustained DC stable channel current due to the AgCl layer formed around the tip during the fabrication process. However, one of the current challenges in ion channel measurements is maintaining a single-channel recording. Multiple protein insertions complicate data analysis and destabilize the bilayer. Herein, we combine the promising probe material (Ag/AgCl) with an approach based on current feedback-controlled tip positioning to maintain long-term single-channel recordings for up to 3 h. We develop a hybrid positioning control system, where the channel current is used as feedback to control the vertical movement of the silver tip and, subsequently, control the number of protein channels inserted in the lipid membrane. Our findings reveal that the area of the lipid bilayer decreases with moving the silver tip up (i.e., decreasing the displacement in the z-direction). By reducing the bilayer area around the fine silver tip, we minimize the probability of multiple insertions and remove unwanted proteins. In addition, we characterize the effect of lipid properties such as fluidity on the lipid membrane area. We believe that the use of silver nanoneedles, which enables DC stable channel current, coupled with the developed tip displacement mechanism will offer more opportunities to employ these probes for chemical imaging and mapping different surfaces.


Assuntos
Lipídeos , Prata
10.
Anal Chim Acta ; 1224: 340162, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998983

RESUMO

This review introduces the recent advances in the nanopore sensing platform, ion channel probes (ICPs), with a particular focus on the different probe design (2011-2022). The use of ion channel proteins has emerged in different applications to understand the dynamics of many biological processes and characterize or detect biomolecules. The development of utilizing protein channels in nanopore sensing has led to diverse platforms in which the ion channels, or biological nanopores, can be embedded in a lipid membrane. Ion channel probes, where the ion channels are integrated at the tip of a solid probe, enable higher spatially-resolved detection of small molecules and extend the applications of ion channels to map different surfaces and perform chemical imaging. Different probe materials and designs have been exploited throughout the last decade, which opens the door for multiple probe architecture and applications. We provide more insights into the advances of ICP designs that render them well-suited for further applications.


Assuntos
Nanoporos , Canais Iônicos/metabolismo
11.
Langmuir ; 38(30): 9148-9156, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35850518

RESUMO

Self-assembled monolayers (SAMs) of alkanethiols on gold have become a central focus of controllable surface chemistry because they can be easily formed from the solution phase and characterized using various techniques. Understanding the formation processes occurring at a nanoscale level is crucial to form defect-free SAMs for tailored applications in bio- and nanotechnology. Although many reports study and characterize SAMs after they are formed on gold surfaces, typical methods have not extensively studied the SAM formation process at the nanoscale. This paper focuses on the formation of defect-free SAMs and elucidates the formation mechanism occurring at the nanoscale level during the formation process. Exploiting the strength of scanning electrochemical cell microscopy, we monitored SAM formation via a soluble redox reporter on a polycrystalline gold foil using voltammetric and amperometric techniques. We formed SAMs by varying the concentration of 3-mercapto-1-propanol [HS(CH2)3OH], 6-mercapto-1-hexanol [HS(CH2)6OH], and 9-mercapto-1-nonanol [HS(CH2)9OH] to determine the effects of the thiol chain length, concentration, and location on the substrate (grain boundaries) on monolayer formation. We observed real-time changes in the quasisteady-state current of our redox reporter during the self-assembly process. Importantly, we formed defect-free SAMs at the nanoscale level using different concentrations of HS(CH2)6OH and HS(CH2)9OH and found that SAM formation at the nanoscale is concentration-dependent and varies when at a boundary between two crystal grains.


Assuntos
Ouro , Microscopia , Ouro/química , Oxirredução
12.
Langmuir ; 38(23): 7322-7330, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35639972

RESUMO

The cation condensation-induced collapse of electrode-bound nucleic acids and the resulting change in the electrochemical signal is a useful tool to predict the structure and redox probe location of heterogeneous structures of surface-tethered DNA probes─a common architecture employed in the development of electrochemical sensors. In this paper, we measure the faradaic current of an appended redox molecule at the 3' position of the nucleic acid using cyclic voltammetry before and after nucleic acid collapse for various nucleic acid architectures and heterogeneous mixtures on the same electrode surface. The voltammetric peak current change with collapse correlates with the proximity of the redox molecules from the surface. For stem-loop probes, the terminal methylene blue is initially held closer to the surface, such that inducing collapse, by reducing the dielectric permittivity of the interrogation solution, results in a ∼30% increase in current. However, when incorporating pseudoknot probes that hold methylene blue further away from the electrode surface, the current change is much larger (∼120%), indicating a larger conformation change. Upon a 50:50 ratio of the two, we observe a change in current that relates to the ratiometric distribution of the probe used to make the surfaces. Additionally, using cyclic voltammetry, we find that the change between diffusion-limited and diffusion-independent peak currents is dependent upon the distinct structural characteristics of DNA probes on the surface (stem-loop or pseudoknot), as well as the ratios of different DNA probes on the surface. Thus, we demonstrate that the heterogeneous nature of DNA probes governs the corresponding electrochemical signals, which can lead to a better understanding on how to predict the structures of functional nucleic acids on electrode surfaces and how this affects surface-to-surface variability and electrochemical response.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , DNA/química , Sondas de DNA/química , Técnicas Eletroquímicas/métodos , Eletroquímica , Eletrodos , Azul de Metileno/química , Oxirredução
13.
Anal Chim Acta ; 1192: 339377, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057946

RESUMO

We demonstrate the ability to rapidly prototype and fabricate an epoxy-embedded electrode platform and microfluidic device suitable for using electrochemical biosensors under flow conditions. We utilize three-dimensional (3-D) printing to rapidly prototype molds to fabricate epoxy-embedded electrodes in addition to molds for rapid prototyping of PDMS microfluidic components. We characterize the bare gold epoxy-embedded electrodes using ferricyanide as a redox indicator and then characterize the performance of an adenosine triphosphate (ATP) specific electrochemical, aptamer-based (E-AB) sensor. We then incorporate the ATP specific E-AB sensors into the microfluidic device to study and take advantage of the dynamic response this class of sensor offers. We were able to flow varying concentrations of target analyte and monitor the dynamic response of the sensors to the changing concentration. This work demonstrates the ability to rapidly prototype E-AB sensors under flow conditions using 3-D printing which can lead to rapid and affordable point-of-care or fieldable applications where dynamic measurements of concentration, specificity and sensitivity and multiplex detection are necessary.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Microfluídica
14.
Langmuir ; 37(42): 12466-12475, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34644498

RESUMO

We demonstrate that cation condensation can induce the collapse of surface-bound nucleic acids and that the electrochemical signal from a tethered redox molecule (methylene blue) upon collapse reports on nucleic acid identity, structure, and flexibility. Furthermore, the correlation of the electrochemical signal and structure is consistent with theoretical considerations of nucleic acid collapse. Changes in solution dielectric permittivity or the concentration of trivalent cations cause the structure of nucleic acids to become more compact due to an increase in attractive electrostatic interactions between the charged biopolymer backbone and multivalent ions in the solution. Consequently, the compaction of nucleic acids results in a change in the dynamics and location of the terminally appended redox marker, which is reflected in the faradaic current measured using cyclic voltammetry. In comparison to ssDNA, nucleic acid duplexes (dsDNA, DNA/peptide nucleic acid, and dsRNA) require nucleic-acid-composition-specific solution conditions for the collapse to occur. Moreover, the magnitude of current increase observed after the collapse is different for each nucleic structure, and we find here that these changes are dictated by physical parameters of the nucleic acids including the axial charge spacing and the periodicity of the helix. The work here aims to provide quantitative and predicative measures of the effects of the nucleic acid structure on the electrochemical signal produced from distal-end appended redox markers. This architecture is commonly employed in functional nucleic acid sensors and a better understanding of structure-to-signal correlations will enable the rational design of sensitive sensing architectures.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Biopolímeros , DNA , DNA de Cadeia Simples , Técnicas Eletroquímicas , Oxirredução
15.
Anal Chem ; 93(33): 11568-11575, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34378930

RESUMO

Resistive pulse sensing using ion channel proteins (biological nanopores) has been evolving as a single-molecule approach to detect small biomolecules owing to atomically precise pore size reproducibility, high signal-to-noise ratio, and molecular selectivity. The incorporation of biological nanopores in sensing platforms requires a stable lipid membrane that can be formed by a variety of methods such as the painting method and droplet-based techniques. However, these methods are limited by the fragility of the unsupported bilayer or the need for specific microdevices. Electrode-supported bilayers, in which a metal electrode is used as a support structure, have been recently developed using a fine gold nanoneedle. We previously described the utility of the gold nanoneedle-supported ion channel probe to detect small molecules with high spatial resolution; however, it exhibited a channel current decay over time, which affected the binding frequency of the target molecule to the protein pore as well. Here, we introduce a silver nanoneedle probe to support the lipid bilayer formation and ion channel measurements. The silver nanoneedle mitigates the current decay observed on gold electrodes and produces stable DC channel currents. Our findings propose the formation of a AgCl layer creating a nonpolarizable electrode. The new nanoneedle is successfully applied for single-molecule detection of sulfonated ß-cyclodextrin (S7ßCD) using αHL as a test bed protein. We believe that this new silver nanoneedle platform has great potential given the relative ease of lipid bilayer formation and stable open channel currents.


Assuntos
Nanoporos , Ouro , Bicamadas Lipídicas , Nanotecnologia , Reprodutibilidade dos Testes , Prata
16.
Artigo em Inglês | MEDLINE | ID: mdl-34321715

RESUMO

In this work, a novel light activatable micron-sized liposomal drug carrier that has a unique capability to release drug repetitively in proportion to the cycle number of short irradiation (5 s) of near-infrared (NIR) pulsed laser is reported. We synthesized methotrexate (MTX)-loaded liposomes based on a modified reverse-phase evaporation method. Gold nanorods (AuNR) were attached to the liposomal surfaces, enabling the liposomes to release drug under short NIR irradiation via the photothermal effect. The concentrations of methotrexate (MTX) released from the liposomes were 10.6, 29.8, 43.7 and 65.9 µg/mL after one, two, three or four NIR laser cycles (1.1 W at 1064 nm, 5 s per cycle), respectively. The current finding will provide possible solution to the previously reported inconsistency in drug release from light activatable liposomal drug carriers at each activation cycle. The repeatability of drug release described in this work is believed to be due to reversible nature of the liposomes. The liposomes release drug via lipid bilayer melting when irradiated by laser due to gold nanorods' plasmonic heat on the lipid bilayer surface and quickly regain their original structure once the laser source is removed. We provided evidence of the reversible liposomal structures by monitoring the change of number densities of liposomes using a microelectrode sensor with different laser irradiation durations and powers. We also assessed the micron-sized liposome with respect to long-term stability, drug encapsulation efficiency, and drug-releasing efficiency, demonstrating the possibility of utilizing these liposomes as long-term drug delivery vehicles for various drugs.

17.
Annu Rev Anal Chem (Palo Alto Calif) ; 14(1): 109-131, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34314225

RESUMO

The advent of electrochemical affinity assays and sensors evolved from pioneering efforts in the 1970s to broaden the field of analytes accessible to the selective and sensitive performance of electrochemical detection. The foundation of electrochemical affinity assays/sensors is the specific capture of an analyte by an affinity element and the subsequent transduction of this event into a measurable signal. This review briefly covers the early development of affinity assays and then focuses on advances in the past decade. During this time, progress on electroactive labels, including the use of nanoparticles, quantum dots, organic and organometallic redox compounds, and enzymes with amplification schemes, has led to significant improvements in sensitivity. The emergence of nanomaterials along with microfabrication and microfluidics technology enabled research pathways that couple the ease of use of electrochemical detection for the development of devices that are more user friendly, disposable, and employable, such as lab-on-a-chip, paper, and wearable sensors.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Nanoestruturas , Pontos Quânticos , Técnicas Eletroquímicas , Microfluídica
18.
Anal Chem ; 93(2): 812-819, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33395261

RESUMO

Electrochemical impedance spectroscopy (EIS), an extremely sensitive analytical technique, is a widely used signal transduction method for the electrochemical detection of target analytes in a broad range of applications. The use of nucleic acids (aptamers) for sequence-specific or molecular detection in electrochemical biosensor development has been extensive, and the field continues to grow. Although nucleic acid-based sensors using EIS offer exceptional sensitivity, signal fidelity is often linked to the physical and chemical properties of the electrode-solution interface. Little emphasis has been placed on the stability of nucleic acid self-assembled monolayers (SAMs) over repeated voltammetric and impedimetric analyses. We have studied the stability and performance of electrochemical biosensors with mixed SAMs of varying length thiolated nucleic acids and short mercapto alcohols on gold surfaces under repeated electrochemical interrogation. This systematic study demonstrates that signal fidelity is linked to the stability of the SAM layer and nucleic acid structure and the packing density of the nucleic acid on the surface. A decrease in packing density and structural changes of nucleic acids significantly influence the signal change observed with EIS after routine voltammetric analysis. The goal of this article is to improve our understanding of the effect of multiple factors on EIS signal response and to optimize the experimental conditions for development of sensitive and reproducible sensors. Our data demonstrate a need for rigorous control experiments to ensure that the measured change in impedance is unequivocally a result of a specific interaction between the target analyte and nucleic recognition element.


Assuntos
Impedância Elétrica , Ácidos Nucleicos/química , Aptâmeros de Nucleotídeos/química , DNA , Espectroscopia Dielétrica/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Transdução de Sinais
19.
ACS ES T Eng ; 1(11)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34988551

RESUMO

In this study, we demonstrate the successful development of an electrochemical aptamer-based sensor for point-of-use detection and quantification of the highly potent microcystin-LR (MC-LR) in water. The sensor uses hexaammineruthenium(III) chloride ([Ru(NH3)6]3+) as redox mediator, because of the ability of the positively charged (3+) molecule to associate with the phosphate backbone of the nucleic acids. We quantitatively measure the target-induced displacement of aptamer associated, or surface confined, [Ru(NH3)6]3+ in the presence of MC-LR. Upon the addition of MC-LR in the water, surface-confined [Ru(NH3)6]3+ dissociates, resulting in less faradaic current from the reduction of [Ru(NH3)6]3+ to [Ru(NH3)6]2+ Sensing surfaces of highly packed immobilized aptamers were capable of recording decreasing square wave voltammetry (SWV) signals after the addition of MC-LR in buffer. As a result, SWV recorded substantial signal suppression within 15 min of target incubation. The sensor showed a calculated limit of detection (LOD) of 9.2 pM in buffer. The effects of interferents were minimal, except when high concentrations of natural organic matter (NOM) were present. Also, the sensor performed well in drinking water samples. These results indicate a sensor with potential for fast and specific quantitative determination of MC-LR in drinking water samples. A common challenge when developing electrochemical, aptamer-based sensors is the need to optimize the nucleic acid aptamer in order to achieve sensitive signaling. This is particularly important when an aptamer experiences only a small or localized conformational change that provides only a limited electrochemical signal change. This study suggests a strategy to overcome that challenge through the use of a nucleic acid-associated redox label.

20.
ACS Sens ; 5(12): 3842-3849, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33305566

RESUMO

Single-nucleotide polymorphisms (SNPs), insertion/deletion (indel) polymorphisms, and DNA methylation are the most frequent types of genetic variations. As such, DNA polymorphisms play significant roles in genetic mapping and diagnostics. Thus, analytical methods enabling DNA polymorphism detection will provide an invaluable means for early disease diagnosis. However, no single electrochemical nucleic acid-based sensor has achieved the detection of the three major polymorphisms (SNPs, indel polymorphisms, and DNA methylation) with sufficient specificity and sensitivity. In response, we explore the utilization of a catalytic reaction between methylene blue (MB) covalently linked to surface-bound nucleic acid and freely diffusing ferricyanide (Fe(CN)63-) to improve specificity and sensitivity of DNA polymorphism detection. We find that the dynamics of the nucleic acid tether is an additional rate-limiting factor for the electrocatalytic reaction, in addition to the more traditional kinetic and excess factors. Our proof-of-concept experiments demonstrate that the use of electrocatalysis enables differentiation of the three polymorphisms when target sequences are present at 10 nM. We hypothesize that this ability is a result of the distinct dynamics of the DNA probe with each respective polymorphism. In addition to the specificity the sensor displays, the sensor achieves a 20 pM limit of detection. We believe that the electrocatalysis between nucleic acid-tethered MB and Fe(CN)63- is highly promising for electrochemical nucleic acid-based sensors to achieve better specificity and sensitivity.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , DNA/genética , Técnicas Eletroquímicas , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...