Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Genet Med ; 26(2): 101012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924259

RESUMO

PURPOSE: To evaluate the diagnostic utility of publicly funded clinical exome sequencing (ES) for patients with suspected rare genetic diseases. METHODS: We prospectively enrolled 297 probands who met eligibility criteria and received ES across 5 sites in Ontario, Canada, and extracted data from medical records and clinician surveys. Using the Fryback and Thornbury Efficacy Framework, we assessed diagnostic accuracy by examining laboratory interpretation of results and assessed diagnostic thinking by examining the clinical interpretation of results and whether clinical-molecular diagnoses would have been achieved via alternative hypothetical molecular tests. RESULTS: Laboratories reported 105 molecular diagnoses and 165 uncertain results in known and novel genes. Of these, clinicians interpreted 102 of 105 (97%) molecular diagnoses and 6 of 165 (4%) uncertain results as clinical-molecular diagnoses. The 108 clinical-molecular diagnoses were in 104 families (35% diagnostic yield). Each eligibility criteria resulted in diagnostic yields of 30% to 40%, and higher yields were achieved when >2 eligibility criteria were met (up to 45%). Hypothetical tests would have identified 61% of clinical-molecular diagnoses. CONCLUSION: We demonstrate robustness in eligibility criteria and high clinical validity of laboratory results from ES testing. The importance of ES was highlighted by the potential 40% of patients that would have gone undiagnosed without this test.


Assuntos
Exoma , Doenças Raras , Humanos , Estudos Prospectivos , Sequenciamento do Exoma , Doenças Raras/diagnóstico , Doenças Raras/genética , Testes Genéticos/métodos , Ontário
3.
Am J Med Genet A ; 191(12): 2878-2883, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37621218

RESUMO

Lissencephaly type 10 is a recently reported condition characterized by posterior predominant abnormalities in gyration with associated seizures, developmental delays or intellectual disability. We report a boy who presented at 5 years of age with epilepsy and developmental delays. His family history was notable for epilepsy in two prior generations associated with variable developmental and cognitive impact. Exome sequencing identified a novel missense variant in CEP85L [NM_001042475.2; c.196A>G, p.(Thr66Ala)] which segregated in four affected family members across three generations. Brain imaging of the proband demonstrated a posterior lissencephaly pattern with pachygyria, while other affected family members demonstrated a similar subcortical band heterotopia. This report expands the phenotypic spectrum of this rare disorder by describing a novel variant in CEP85L in a family with variable clinical and neuroimaging findings.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Epilepsia , Lisencefalia , Masculino , Humanos , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Encéfalo/diagnóstico por imagem , Mutação de Sentido Incorreto , Proteínas do Citoesqueleto/genética , Proteínas de Fusão Oncogênica
4.
Am J Med Genet A ; 191(10): 2640-2646, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37340855

RESUMO

Floating-Harbor syndrome (FLHS) is a neurodevelopmental disorder (NDD) caused by truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein gene (SRCAP). Truncating variants proximal to this location in SRCAP result in a non-FLHS SRCAP-associated NDD; an overlapping but distinct NDD characterized by developmental delay with or without intellectual disability (ID), hypotonia, normal stature, and behavioral and psychiatric issues. Here, we report a young woman who initially presented in childhood with significant delays in speech and mild ID. In young adulthood, she developed schizophrenia. On physical examination, she had facial features suggestive of 22q11 deletion syndrome. After non-diagnostic chromosomal microarray and trio exome sequencing (ES), a re-analysis of trio ES data identified a de novo missense variant in SRCAP that was proximal to the FLHS critical region. Subsequent DNA methylation studies showed the unique methylation signature associated with pathogenic sequence variants in non-FLHS SRCAP-related NDD. This clinical report describes an individual with non-FLHS SRCAP-related NDD caused by an SRCAP missense variant, and it also demonstrates the clinical utility of ES re-analysis and DNA methylation analysis for undiagnosed patients, in particular, those with variants of uncertain significance.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Adulto Jovem , Anormalidades Múltiplas/genética , Adenosina Trifosfatases/genética , Metilação de DNA , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética
5.
Sci Adv ; 8(33): eabo7112, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35977029

RESUMO

Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.


Assuntos
DNA Helicases , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse
6.
Genes (Basel) ; 13(5)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35627257

RESUMO

With the increasing use of genetic testing in pediatric epilepsy, it is important to describe the diagnostic outcomes as they relate to clinical care. The goal of this study was to assess the diagnostic yield and impact on patient care of genetic epilepsy panel testing. We conducted a retrospective chart review of patients at the Children's Hospital of Eastern Ontario (CHEO) who had genetic testing between the years of 2013-2020. We identified 227 patients that met criteria for inclusion. The majority of patients had their testing performed as "out-of-province" tests since province-based testing during this period was limited. The diagnostic yield for multi-gene epilepsy panel testing was 17% (39/227) and consistent with the literature. Variants of unknown significance (VUS) were reported in a significant number of undiagnosed individuals (77%; 128/163). A higher diagnostic rate was observed in patients with a younger age of onset of seizures (before one year of age; 32%; 29/90). A genetic diagnosis informed prognosis, recurrence risk counselling and expedited access to resources in all those with a diagnosis. A direct change in clinical management as a result of the molecular diagnosis was evident for 9% (20/227) of patients. The information gathered in this study provides evidence of the clinical benefits of genetic testing in epilepsy and serves as a benchmark for comparison with the current provincial Ontario Epilepsy Genetic Testing Program (OEGTP) that began in 2020.


Assuntos
Epilepsia , Predisposição Genética para Doença , Criança , Epilepsia/diagnóstico , Epilepsia/genética , Testes Genéticos , Humanos , Estudos Retrospectivos , Convulsões/genética
7.
Front Cell Dev Biol ; 10: 1022683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589751

RESUMO

Wolf-Hirschhorn syndrome (WHS) is caused by deletion of a critical region of the short arm of chromosome 4. Clinical features of WHS include distinct dysmorphic facial features, growth restriction, developmental delay, intellectual disability, epilepsy, and other malformations. The NSD2 gene localizes within this critical region along with several other genes. Pathogenic variants in NSD2 cause Rauch-Steindl (RAUST) syndrome. Clinical features of RAUST syndrome partially overlap with WHS, however epilepsy and the recognizable facial gestalt are not observed. Here, we report a case of a young boy who presented with developmental delay, dysmorphic features and short stature. After negative chromosomal microarray and whole exome sequencing, genomic DNA methylation episignature analysis was performed. Episignatures are sensitive and specific genome-wide DNA methylation patterns associated with a growing number of rare disorders. The patient was positive for the WHS episignature. Reanalysis of the patient's exome data identified a previously undetected frameshift variant in NSD2, leading to a diagnosis of RAUST. This report demonstrates the clinical utility of DNA methylation episignature analysis for unresolved patients, and provides insight into the overlapping pathology between WHS and RAUST as demonstrated by the similarities in their genomic DNA methylation profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...