Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706303

RESUMO

The purpose of this investigation was to establish the role biological sex plays on circulating factors following heat stress (HS). Barrows and gilts (36.8 ± 3.7 kg body weight) were kept in either thermoneutral (TN; 20.8 ± 1.6 °C; 62.0 ± 4.7 % relative humidity; n = 8/sex) conditions or exposed to HS (39.4 ± 0.6 °C; 33.7 ± 6.3 % relative humidity) for either 1 (HS1; n = 8/sex) or 7 (HS7; n = 8/sex) days. Circulating glucose decreased as a main effect of environment (P=0.03). Circulating non-esterified fatty acid (NEFA) had an environment × sex interaction (P<0.01) as HS1 barrows had increased NEFA compared to HS1 gilts (P=0.01) and NEFA from HS7 gilts increased compared to HS1 gilts (P=0.02) and HS7 barrows (P=0.04). Cortisol, insulin, glucagon, T3 and T4 were reduced as a main effect of environment (P≤0.01). Creatinine was increased in HS1 and HS7 animals compared to TN (P≤0.01), indicative of decreased glomerular filtration rate. White blood cell populations exhibited differential patterns based on sex and time. Neutrophils and lymphocytes had an environment × sex interaction (P≤0.05) as circulating neutrophils were increased in HS1 barrows compared to TN and HS7 barrows, and HS1 gilts (P≤0.01) and HS7 barrows had less neutrophils compared to TN barrows (P=0.01), whereas they remained similar in gilts. In contrast, barrow lymphocyte number was similar between groups, but in HS7 gilts they were decreased compared to TN and HS1 gilts (P≤0.04). In total, these data demonstrate that HS alters a host of circulating factors and that biological sex mediates, at least in part, the physiological response to HS.

2.
J Equine Vet Sci ; 136: 105070, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642813

RESUMO

We aimed to test the hypothesis that repeated muscle collections would impact mitochondrial function, antioxidant status, and markers of inflammation and muscle damage. Twenty-six horses (8 geldings, 18 mares; mean ± SD 9.5 ± 3.5 y) had gluteus medius muscle biopsy samples collected at: 0 and 24h (n=7); 0 and 6h (n = 6); 0, 6, and 12h (n=7); or 0, 6, 12, and 24h (n=6). Blood was collected from all horses every 6h for 72h, starting 24h prior to the 0h muscle collection. Data were analyzed using mixed linear models. Muscle integrative (per mg tissue) electron transfer capacity of complex II decreased (P=0.004) and intrinsic (relative to citrate synthase (CS) activity) LEAK increased (P<0.03) from 0 to 6h but both returned to 0h levels by 12h. Activity of CS was greater at 0 than 12 and 24h (P≤0.02). Serum creatine kinase (CK) activity was similar from -24 through 0h but increased in all horses at 6h and remained elevated through 48h (P<0.05) though not above reference ranges. Whole blood superoxide dismutase activity fluctuated throughout the 72-h collection period (P=0.03) and serum cortisol concentration displayed a circadian pattern (P<0.0001) but neither were altered by muscle collections. No other variable, including muscle mitochondrial capacities and function, blood and muscle antioxidant status and concentrations of select cytokines, and serum amyloid A, differed by time or muscle collection. Repeated gluteal collections had limited short-term or no effect on physiological markers in unstressed, mature horses except serum CK activity, which should be interpreted with caution during repeated tissue collections.

3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446313

RESUMO

Mechanical unloading during microgravity causes skeletal muscle atrophy and impairs mitochondrial energetics. The elevated production of reactive oxygen species (ROS) by mitochondria and Nox2, coupled with impairment of stress protection (e.g., SIRT1, antioxidant enzymes), contribute to atrophy. We tested the hypothesis that the SIRT1 activator, SRT2104 would rescue unloading-induced mitochondrial dysfunction. Mitochondrial function in rat gastrocnemius and soleus muscles were evaluated under three conditions (10 days): ambulatory control (CON), hindlimb unloaded (HU), and hindlimb-unloaded-treated with SRT2104 (SIRT). Oxidative phosphorylation, electron transfer capacities, H2O2 production, and oxidative and antioxidant enzymes were quantified using high-resolution respirometry and colorimetry. In the gastrocnemius, (1) integrative (per mg tissue) proton LEAK was lesser in SIRT than in HU or CON; (2) intrinsic (relative to citrate synthase) maximal noncoupled electron transfer capacity (ECI+II) was lesser, while complex I-supported oxidative phosphorylation to ECI+II was greater in HU than CON; (3) the contribution of LEAK to ECI+II was greatest, but cytochrome c oxidase activity was lowest in HU. In both muscles, H2O2 production and concentration was greatest in SIRT, as was gastrocnemius superoxide dismutase activity. In the soleus, H2O2 concentration was greater in HU compared to CON. These results indicate that SRT2104 preserves mitochondrial function in unloaded skeletal muscle, suggesting its potential to support healthy muscle cells in microgravity by promoting necessary energy production in mitochondria.


Assuntos
Antioxidantes , Sirtuína 1 , Ratos , Animais , Antioxidantes/farmacologia , Sirtuína 1/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Músculo Esquelético/metabolismo , Oxirredução , Atrofia Muscular/metabolismo , Mitocôndrias/metabolismo , Membro Posterior/metabolismo , Biologia
4.
J Equine Vet Sci ; 124: 104297, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37236727

RESUMO

A core group of 27 equine nutritionists and physiologists joined together in the late 1960s to formally address and enhance the direction of equine research, creating the Equine Nutrition and Physiology Society. In 2003, that growing society transformed into the Equine Science Society, which now serves as the preeminent, internationally recognized scientific equine organization. In recent years, it has been appreciated that equine science encompasses a wide range of focus areas, including exercise science, nutrition, genetics, reproductive physiology, teaching and extension, production and management, and mix of other specialties, qualified as biosciences. Additionally, trainees are highly valued in the society, with the clear understanding that young people are the future of equine science. Amongst tightening budgets, equine researchers must focus on timely dissemination of high-quality research studies and development of strong, interdisciplinary, cross-species, and multi-institutional collaborations to ensure sustainability of academic research programs. With a little creativity, equine science will continue to thrive for the betterment of the horse and all involved in the equine industry.


Assuntos
Medicina Veterinária , Animais , Cavalos , Medicina Veterinária/tendências
5.
J Equine Vet Sci ; 124: 104281, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905972

RESUMO

Skeletal muscle is a highly dynamic organ that is essential for locomotion as well as endocrine regulation in all populations of horses. However, despite the importance of adequate muscle development and maintenance, the mechanisms underlying protein anabolism in horses on different diets, exercise programs, and at different life stages remain obscure. Mechanistic target of rapamycin (mTOR) is a key component of the protein synthesis pathway and is regulated by biological factors such as insulin and amino acid availability. Providing a diet ample in vital amino acids, such as leucine and glutamine, is essential in activating sensory pathways that recruit mTOR to the lysosome and assist in the translation of important downstream targets. When the diet is well balanced, mitochondrial biogenesis and protein synthesis are activated in response to increased exercise bouts in the performing athlete. It is important to note that the mTOR kinase pathways are multifaceted and very complex, with several binding partners and targets that lead to specific functions in protein turnover of the cell, and ultimately, the capacity to maintain or grow muscle mass. Further, these pathways are likely altered across the lifespan, with an emphasis of growth in young horses while decreases in musculature with aged horses appears to be attributable to degradation or other regulators of protein synthesis rather than alterations in the mTOR pathway. Previous work has begun to pinpoint ways in which the mTOR pathway is influenced by diet, exercise, and age; however, future research is warranted to quantify the functional outcomes related to changes in mTOR. Promisingly, this could provide direction on appropriate management techniques to support skeletal muscle growth and maximize athletic potential in differing equine populations.


Assuntos
Transdução de Sinais , Sirolimo , Animais , Cavalos , Transdução de Sinais/fisiologia , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Músculo Esquelético/metabolismo , Aminoácidos/metabolismo
6.
Antioxidants (Basel) ; 12(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829821

RESUMO

Coenzyme Q10 (CoQ10) is an essential component of the mitochondrial electron transfer system and a potent antioxidant. The impact of CoQ10 supplementation on mitochondrial capacities and the muscle proteome is largely unknown. This study determined the effect of CoQ10 supplementation on muscle CoQ10 concentrations, antioxidant balance, the proteome, and mitochondrial respiratory capacities. In a randomized cross-over design, six Thoroughbred horses received 1600 mg/d CoQ10 or no supplement (control) for 30-d periods separated by a 60-d washout. Muscle samples were taken at the end of each period. Muscle CoQ10 and glutathione (GSH) concentrations were determined using mass spectrometry, antioxidant activities by fluorometry, mitochondrial enzyme activities and oxidative stress by colorimetry, and mitochondrial respiratory capacities by high-resolution respirometry. Data were analyzed using mixed linear models with period, supplementation, and period × supplementation as fixed effects and horse as a repeated effect. Proteomics was performed by tandem mass tag 11-plex analysis and permutation testing with FDR < 0.05. Concentrations of muscle CoQ10 (p = 0.07), GSH (p = 0.75), and malondialdehyde (p = 0.47), as well as activities of superoxide dismutase (p = 0.16) and catalase (p = 0.66), did not differ, whereas glutathione peroxidase activity (p = 0.003) was lower when horses received CoQ10 compared to no supplement. Intrinsic (relative to citrate synthase activity) electron transfer capacity with complex II (ECII) was greater, and the contribution of complex I to maximal electron transfer capacity (FCRPCI and FCRPCIG) was lower when horses received CoQ10 with no impact of CoQ10 on mitochondrial volume density. Decreased expression of subunits in complexes I, III, and IV, as well as tricarboxylic acid cycle (TCA) enzymes, was noted in proteomics when horses received CoQ10. We conclude that with CoQ10 supplementation, decreased expression of TCA cycle enzymes that produce NADH and complex I subunits, which utilize NADH together with enhanced electron transfer capacity via complex II, supports an enhanced reliance on substrates supplying complex II during mitochondrial respiration.

7.
Front Vet Sci ; 9: 1011159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532343

RESUMO

The element, Selenium (Se), has an essential nutritive and biological role as a trace mineral known primarily for its vital antioxidant functions as a constituent of the selenoenzyme, glutathione peroxidase. However, Se also has a much more global biological impact beyond antioxidant function. The objective of this review is to present an overview of prior research on the extra-antioxidant effects of Se with a key focus on skeletal muscle mitochondrial energetics. Cognizance of these additional functions of Se is requisite when formulating and recommending dietary supplementation of Se in humans or animals. Chief amongst its myriad of biological contributions, Se influences mitochondrial capacity and function and, subsequently, muscular health. Dietary Se supplementation has been shown to increase skeletal muscle mitochondrial volume density and within some cell lines, Se treatment increases mitochondrial biogenesis and respiratory capacity. In addition, the selenoproteins H, N, W, and O and deiodinases exhibit varying effects on mitochondrial and/or skeletal muscle function. Selenoprotein H enhances mitochondrial biogenesis whereas selenoproteins N and W appear to influence muscle calcium homeostasis which impacts mitochondrial function. Moreover, selenoprotein O's intramitochondrial residence facilitates Se's redox function. Deiodinases regulate thyroid hormone activation which impacts muscle cell regeneration, metabolism, and reactive oxygen species production. Although the precise relationships between dietary Se and skeletal muscle mitochondria remain unclear, previous research constitutes a firm foundation that portends promising new discoveries by future investigations.

8.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908793

RESUMO

Maintenance of mitochondrial health, which is supported in part by dietary antioxidants such as selenium (Se) and vitamin E (vitE), is pertinent to optimizing athletic performance. Deficiencies in Se and vitE negatively impact muscle health but mitochondrial adaptations to various levels of dietary Se and vitE are poorly understood. Young Quarter Horses (mean ± SD: 17.6 ± 0.9 mo) undergoing submaximal exercise training were used to test the hypothesis that a proprietary antioxidant blend containing elevated Se yeast (EconomasE, Alltech, Inc., Nicholasville, KY) would improve mitochondrial characteristics compared to Se at current requirements, even with reduced vitE intake. Horses were balanced by age, sex, body weight (BW), and farm of origin and randomly assigned to one of three custom-formulated concentrates fed at 1% BW (dry matter, DM basis) for 12 wk: 1) 100 IU vitE/kg DM and 0.1 mg Se/kg DM (CON, n = 6); 2) no added vitE plus EconomasE to provide 0.1 mg Se/kg DM (ESe1, n = 6); or 3) no added vitE plus EconomasE to provide 0.3 mg Se/kg DM (ESe3, n = 6). Samples collected at week 0 and 12 were analyzed for serum Se and middle gluteal glutathione peroxidase (GPx) and mitochondrial enzyme activities by kinetic colorimetry and mitochondrial capacities by high-resolution respirometry. Data were analyzed using mixed linear models in SAS v9.4 with repeated measures (time) and fixed effects of time, diet, and time × diet; horse(diet) served as a random effect. Serum Se tended to increase in all horses by week 12 (P = 0.08) but was unaffected by diet. Muscle GPx activity remained similar among all horses throughout the duration of the study. Mitochondrial volume density (citrate synthase [CS] activity), integrative function (cytochrome c oxidase [CCO] activity per mg protein), and integrative (per mg tissue) oxidative (P) and electron transfer (E) capacities increased from week 0 to 12 in all horses (P ≤ 0.01). Intrinsic (relative to CS) CCO activity decreased in all horses (P = 0.001), while intrinsic P and E capacities decreased only in ESe1 horses from week 0 to 12 (P ≤ 0.002). These results suggest that feeding EconomasE to provide 0.3 mg Se/kg DM may prevent adverse effects of removing 100 IU dietary vitE/kg DM on mitochondria in young horses. More research is needed to determine optimal dietary Se and vitE levels in performance horses to maximize mitochondrial energy production.


Mitochondria, colloquially referred to as the powerhouses of the cell, are essential for sustained energy production, which is particularly important for athletic performance. During exercise, reactive oxygen species (ROS) are produced as a normal byproduct of muscle contraction. ROS act as critical signaling molecules and are essential to stimulate adaptation to exercise and other stressors. However, if excess ROS are produced and not sequestered by antioxidants, they may damage cellular components such as lipids, proteins, and DNA. Selenium (Se) and vitamin E (vitE) are two primary dietary antioxidants that aid in quenching excess ROS. To evaluate the impact of Se and vitE on mitochondria, three diets differing in Se and vitE levels were provided to lightly exercising young horses for 12 wk. Skeletal muscle mitochondrial capacity was negatively impacted by the reduction of dietary vitE, which was rescued with elevated dietary Se. The results highlight the importance of determining optimal levels of minerals and vitamins in performance horse diets to ensure proper energy production during exercise.


Assuntos
Selênio , Animais , Antioxidantes/metabolismo , Peso Corporal , Suplementos Nutricionais , Cavalos , Mitocôndrias/metabolismo , Selênio/metabolismo , Vitamina E/farmacologia
10.
J Anim Sci ; 99(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619765

RESUMO

Dietary intervention may be a valuable strategy to optimize the intra-articular environment in young horses to prolong their performance career. To test the hypothesis that dietary supplementation of a Saccharomyces cerevisiae fermentation product would reduce markers of joint inflammation and increase markers of cartilage metabolism following a single inflammatory insult, Quarter Horse yearlings (mean ± SD; 9 ± 1.0 mo) were balanced by age, sex, body weight (BW), and farm of origin and randomly assigned to the following treatment groups: 1.25% BW/d (dry matter basis) custom-formulated concentrate only (CON; n = 9) or concentrate top-dressed with 21 g/d S. cerevisiae fermentation product (SCFP; n = 10) for 98 d. Horses had ad libitum access to Coastal bermudagrass hay. On day 84, one randomly selected radial carpal joint from each horse was injected with 0.5 ng lipopolysaccharide (LPS) solution. The remaining carpal joint was injected with sterile lactated Ringer's solution as a contralateral control. Synovial fluid obtained before supplementation (day 0) and on day 84 at preinjection hour 0 and 6, 12, 24, 168, and 336 h postinjection was analyzed for prostaglandin E2 (PGE2), carboxypropeptide of type II collagen (CPII), and collagenase cleavage neopeptide (C2C) by commercial assays. Rectal temperature, heart rate, respiration rate, carpal surface temperature, and carpal circumference were recorded prior to each sample collection and for 24 h postinjection. Data were analyzed using linear models with repeated measures. From day 0 to 84, synovial C2C declined (P ≤ 0.01) and the CPII:C2C ratio increased (P ≤ 0.01) in all horses with no effect of diet. In response to intra-articular LPS, synovial PGE2 increased by hour 6 (P ≤ 0.01) and returned to baseline by hour 336; CPII increased by hour 12, remained elevated through hour 168 (P ≤ 0.01), and returned to baseline by hour 336; and C2C increased by hour 6 (P ≤ 0.01) but did not return to baseline through hour 336 (P ≤ 0.01). Post-intra-articular injection, PGE2 levels were lower in SCFP than CON horses (P = 0.01) regardless of injection type. Synovial CPII and the CPII:C2C ratio demonstrated stability during the LPS challenge in SCFP compared with CON horses (P ≤ 0.01). Clinical parameters were not influenced by diet but increased in response to repeated arthrocentesis (P ≤ 0.01). Dietary SCFP may favorably modulate intra-articular inflammation following an acute stressor and influence cartilage turnover in young horses.


Assuntos
Doenças dos Cavalos , Lipopolissacarídeos , Animais , Suplementos Nutricionais , Fermentação , Doenças dos Cavalos/tratamento farmacológico , Cavalos , Injeções Intra-Articulares/veterinária , Lipopolissacarídeos/metabolismo , Saccharomyces cerevisiae , Líquido Sinovial/metabolismo
11.
J Anim Sci ; 99(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228797

RESUMO

Omega-3 (n-3; ω-3) fatty acids (FA) are often included in the diet for their potential health benefits. However, because oxidative potential is increased with the degree of unsaturation in vitro, polyunsaturated FA such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) may be at increased risk of lipid peroxidation. We aimed to determine the effects of dietary n-3 FA supplementation on antioxidant status and lipid peroxidation in yearling horses. Quarter Horses (mean ± SEM; 14.6 ± 0.2 mo) were randomly assigned to receive no n-3 FA supplementation (CON; n = 6) or 60 mg n-3/kg body weight from milled flaxseed (FLAX; n = 6) or encapsulated fish oil (FISH; n = 6). All horses received a basal diet of mixed grain concentrate fed individually at 1.5% body weight (dry matter basis) and ad libitum bahiagrass pasture forage. Blood samples were obtained before and after 70 d of supplementation to evaluate vitamin E, selenium, lipids, antioxidant status, and oxidative stress. Data were analyzed using a mixed model ANOVA with repeated measures. Supplementation with n-3 FA did not reduce serum vitamin E or Se and, in fact, elevated (P ≤ 0.0003) vitamin E status in FISH horses. At day 70, serum triglycerides were lower in FISH and FLAX horses than CON horses (P ≤ 0.02) and F2-isoprostanes were lower in FISH than CON horses (P = 0.0002). Dietary n-3 FA had no effect on cholesterol, reduced and oxidized glutathione, glutathione peroxidase, and thiobarbituric acid-reactive substances. In growing horses fed to meet their vitamin E requirements, supplementation with 60 mg n-3/kg body weight did not negatively affect vitamin E status or promote lipid peroxidation. Elevated vitamin E status in horses fed FISH, coupled with lower serum F2-isoprostanes, further suggest that the longer-chain, highly unsaturated n-3 FA, EPA and DHA, may actually attenuate lipid peroxidation.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Suplementos Nutricionais , Óleos de Peixe , Cavalos , Peroxidação de Lipídeos , Vitamina E
12.
J Anim Sci ; 99(8)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181712

RESUMO

Mitigation of exercise-induced stress is of key interest in determining ways to optimize performance horse health. To test the hypothesis that dietary supplementation of a Saccharomyces cerevisiae fermentation product would decrease markers of exercise-induced stress and inflammation in young horses, Quarter Horse yearlings (mean ± SD; 9 ± 1 mo) were randomly assigned to receive either no supplementation (CON; n = 8) or 21 g/d S. cerevisiae fermentation product (10.5 g/feeding twice daily; SCFP; n = 10) top-dressed on a basal diet of custom-formulated grain as well as ad libitum Coastal bermudagrass hay. After 8 wk of dietary treatments, horses underwent a 2-h submaximal exercise test (SET) on a free-stall mechanical exerciser. Serum was collected before dietary treatment supplementation (week 0), at week 8 pre-SET, and 0, 1, and 6 h post-SET and analyzed for concentrations of cortisol and serum amyloid A (SAA) by commercial enzyme-linked immunosorbent assay (ELISA) and for cytokine concentrations by commercial bead-based ELISA. Data were analyzed using linear models with repeated measures in SAS v9.4. From week 0 to 8 (pre-SET), serum cortisol decreased (P = 0.01) and SAA did not change, but neither were affected by diet. Serum concentrations of all cytokines decreased from week 0 to 8 (P ≤ 0.008), but granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and interleukin-8 (IL-8) decreased to a greater extent in CON than in SCFP horses (P ≤0.003). In response to the week 8 SET, serum cortisol increased in all horses (P < 0.0001) but returned to pre-SET levels by 1 h post-SET in horses receiving SCFP. At 6 h post-SET, cortisol concentrations in CON horses returned to pre-SET concentrations, whereas cortisol declined further in SCFP horses to below pre-SET levels (P = 0.0002) and lower than CON (P = 0.003) at that time point. SAA increased at 6 h post-SET in CON (P < 0.0001) but was unchanged through 6 h in SCFP horses. All cytokines except G-CSF increased in response to the SET (P < 0.0001) but showed differing response patterns. Concentrations of IL-1ß, IL-6, and tumor necrosis factor-alpha were lesser (P ≤ 0.05), and concentrations of G-CSF and IL-18 tended to be lesser (P ≤ 0.09) in SCFP compared with CON horses throughout recovery from the SET. In summary, 8 wk of dietary supplementation with 21 g/d of SCFP may mitigate cellular stress following a single, prolonged submaximal exercise bout in young horses.


Assuntos
Suplementos Nutricionais , Saccharomyces cerevisiae , Ração Animal/análise , Animais , Biomarcadores , Dieta/veterinária , Fermentação , Cavalos
13.
Sci Rep ; 11(1): 7352, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795725

RESUMO

To test the hypothesis that complexed trace mineral supplementation would increase antioxidant capacity and decrease muscle oxidative stress and damage in young horses entering an exercise training program, Quarter Horses (mean [Formula: see text] SD; 9.7 ± 0.7 mo) balanced by age, sex, and BW were assigned to receive complexed (CTM; n = 8) or inorganic (INORG; n = 8) trace minerals at -12 week relative to this study. Blood and muscle samples were collected before (week 0) and after 12 week of light exercise training surrounding a 1.5-h trailer stressor. Muscle glutathione peroxidase (GPx) activity was higher for CTM than INORG horses (P ≤ 0.0003) throughout the study. Following both trailer stressors, serum creatine kinase increased (P < 0.0001) and remained elevated through 24 h post-trailering (P < 0.0001). At week 0, muscle malondialdehyde, expression of superoxide dismutase 2, and whole blood GPx activity increased (P [Formula: see text] 0.003) following trailering but trailering did not affect these measures at week 12. Young horses supplemented with CTM had higher muscle GPx activity than horses receiving INORG, but CTM did not affect damage markers following a stressor. Dietary CTM may be useful for improving antioxidant capacity during exercise training in young equine athletes.


Assuntos
Ração Animal , Antioxidantes/metabolismo , Suplementos Nutricionais , Oligoelementos/metabolismo , Criação de Animais Domésticos , Animais , Biomarcadores/metabolismo , Peso Corporal , Creatina Quinase/sangue , Dieta/veterinária , Feminino , Glutationa Peroxidase/metabolismo , Cavalos , Masculino , Malondialdeído/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Selênio/metabolismo
14.
J Anim Sci ; 99(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539534

RESUMO

Conjugated linoleic acid (CLA) improves oxidative stress and mitochondrial biogenesis in various species but has not been thoroughly investigated in horses. We collected blood and muscle samples from lightly exercising horses before and 6 and 12 wk after receiving either soybean oil (CON; n = 5) or CLA (CLA; n = 5) supplementation. Samples were analyzed for markers of mitochondrial characteristics, antioxidant status, oxidative stress, and muscle damage. Data were analyzed using a linear model with repeated measures. In the triceps brachii (TB), citrate synthase (CS) activity was higher in CON than CLA horses (P = 0.003) but was unaffected by diet in the gluteus medius (GM). Integrative (relative to mg protein) cytochrome c oxidase (CCO) activity was higher in TB than the GM (P < 0.0001), while intrinsic (relative to CS) CCO was lower in the TB than the GM (P = 0.02) and tended to be lower in CON than CLA horses (P = 0.06). Neither CS nor integrative CCO activities were affected by time. In the GM, superoxide dismutase activity tended to increase in CON through week 12 (P = 0.10). Over both muscle groups, glutathione peroxidase activity tended to be higher in CON compared with CLA at week 12 (P = 0.06). Malondialdehyde was higher in the TB than the GM (P = 0.0004) but was unaffected by diet, while serum creatine kinase activity tended to be lower in CLA than CON horses (P = 0.07). These results suggest that CLA supplementation may lead to mitochondrial adaptations and prevent myofiber perturbation in skeletal muscle of young, lightly exercised horses.


Assuntos
Ácidos Linoleicos Conjugados , Animais , Antioxidantes , Suplementos Nutricionais , Cavalos , Ácidos Linoleicos Conjugados/farmacologia , Mitocôndrias Musculares , Músculo Esquelético
15.
Front Aging ; 2: 708918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35822026

RESUMO

In aged humans, low-intensity exercise increases mitochondrial density, function and oxidative capacity, decreases the prevalence of hybrid fibers, and increases lean muscle mass, but these adaptations have not been studied in aged horses. Effects of age and exercise training on muscle fiber type and size, satellite cell abundance, and mitochondrial volume density (citrate synthase activity; CS), function (cytochrome c oxidase activity; CCO), and integrative (per mg tissue) and intrinsic (per unit CS) oxidative capacities were evaluated in skeletal muscle from aged (n = 9; 22 ± 5 yr) and yearling (n = 8; 9.7 ± 0.7 mo) horses. Muscle was collected from the gluteus medius (GM) and triceps brachii at wk 0, 8, and 12 of exercise training. Data were analyzed using linear models with age, training, muscle, and all interactions as fixed effects. At wk 0, aged horses exhibited a lower percentage of type IIx (p = 0.0006) and greater percentage of hybrid IIa/x fibers (p = 0.002) in the GM, less satellite cells per type II fiber (p = 0.03), lesser integrative and intrinsic (p ≤ 0.04) CCO activities, lesser integrative oxidative phosphorylation capacity with complex I (PCI; p = 0.02) and maximal electron transfer system capacity (ECI+II; p = 0.06), and greater intrinsic PCI, ECI+II, and electron transfer system capacity with complex II (ECII; p ≤ 0.05) than young horses. The percentage of type IIx fibers increased (p < 0.0001) and of type IIa/x fibers decreased (p = 0.001) in the GM, and the number of satellite cells per type II fiber increased (p = 0.0006) in aged horses following exercise training. Conversely, the percentage of type IIa/x fibers increased (p ≤ 0.01) and of type IIx fibers decreased (p ≤ 0.002) in young horses. Integrative maximal oxidative capacity (p ≤ 0.02), ECI+II (p ≤ 0.07), and ECII (p = 0.0003) increased for both age groups from wk 0 to 12. Following exercise training, aged horses had a greater percentage of IIx (p ≤ 0.002) and lesser percentage of IIa/x fibers (p ≤ 0.07), and more satellite cells per type II fiber (p = 0.08) than young horses, but sustained lesser integrative and intrinsic CCO activities (p ≤ 0.04) and greater intrinsic PCI, ECI+II, and ECII (p ≤ 0.05). Exercise improved mitochondrial measures in young and aged horses; however, aged horses showed impaired mitochondrial function and differences in adaptation to exercise training.

16.
J Anim Sci ; 98(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877918

RESUMO

Temperamental cattle tend to yield carcasses of poorer quality, and Brahman cattle are reportedly more temperamental than non-indicus cattle breeds. A potential link between temperament and product quality may be mitochondrial activity. We hypothesized that mitochondrial measures would be greater in temperamental compared with calm heifers and that the relationships between temperament and mitochondria would persist as heifers age. Serum cortisol and skeletal muscle (longissimus thoracis [LT] and trapezius [TRAP]) mitochondrial profiles and antioxidant activities were quantified from the same calm (n = 6) and temperamental (n = 6) Brahman heifers at 8, 12, and 18 mo of age. Data were analyzed using a mixed model ANOVA in SAS (9.4) with repeated measures. Serum cortisol was greater in temperamental compared with calm heifers throughout the study (P = 0.02). Mitochondrial volume density (citrate synthase [CS] activity) increased over time (P < 0.0001) but was similar between temperament and muscle groups. Mitochondrial function (cytochrome c oxidase activity) was greatest in the temperamental LT at 8 mo of age (P ≤ 0.0006), greatest in the temperamental TRAP at 18 mo of age (P ≤ 0.003), and did not differ by temperament at 12 mo of age. Integrative (relative to tissue wet weight) mitochondrial oxidative phosphorylation capacity with complex I substrates (PCI), PCI plus complex II substrate (PCI+II), noncoupled electron transfer system capacity (ECI+II), and E with functional complex II only (ECII) were greater in the TRAP than LT for calm heifers at all ages (P ≤ 0.002), but were similar between muscle groups in temperamental heifers. Overall, calm heifers tended to have greater intrinsic (relative to CS activity) PCI and flux control of PCI+II (P ≤ 0.1) than temperamental heifers, indicating greater utilization of complex I paired with greater coupling efficiency in calm heifers. Within the LT, integrative PCI+II was greater (P = 0.05) and ECI+II tended to be greater (P = 0.06) in temperamental compared with calm heifers. From 8- to 18-mo old, glutathione peroxidase (GPx) activity decreased (P < 0.0001) and superoxide dismutase activity increased (P = 0.02), and both were similar between muscle groups. The activity of GPx was greater in temperamental compared with calm heifers at 8 (P = 0.004) but not at 12 or 18 mo of age. These results detail divergent skeletal muscle mitochondrial characteristics of live Brahman heifers according to temperament, which should be further investigated as a potential link between temperament and product quality.


Assuntos
Bovinos/fisiologia , Mitocôndrias Musculares/fisiologia , Temperamento/fisiologia , Envelhecimento , Animais , Metabolismo Energético , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...