Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 5(Pt 6): 681-698, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443353

RESUMO

Hexaferrites are an important class of magnetic oxides with applications in data storage and electronics. Their crystal structures are highly modular, consisting of Fe- or Ba-rich close-packed blocks that can be stacked in different sequences to form a multitude of unique structures, producing large anisotropic unit cells with lattice parameters typically >100 Šalong the stacking axis. This has limited atomic-resolution structure solutions to relatively simple examples such as Ba2Zn2Fe12O22, whilst longer stacking sequences have been modelled only in terms of block sequences, with no refinement of individual atomic coordinates or occupancies. This paper describes the growth of a series of complex hexaferrite crystals, their atomic-level structure solution by high-resolution synchrotron X-ray diffraction, electron diffraction and imaging methods, and their physical characterization by magnetometry. The structures include a new hexaferrite stacking sequence, with the longest lattice parameter of any hexaferrite with a fully determined structure.

2.
Chem Commun (Camb) ; 54(68): 9490-9493, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30087969

RESUMO

A series of Bn-PAHs have been prepared by functionalisation of a B1-PAH, leading to the first only boron doped B3-PAH to the best of our knowledge. These Bn-PAHs represent the first three members of a series of {B-Mes} fused oligo-naphthalenes and trends in key properties of this series have been elucidated.

3.
Faraday Discuss ; 201: 327-335, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28612863

RESUMO

Two new amide functionalised metal-organic frameworks, In(OH)CSA and In(OH)PDG, were synthesized using two flexible linkers, N-(4-carboxyphenyl)succinamic acid (CSA) and N,N'-(1,4-phenylenedicarbonyl)diglycine (PDG), respectively. Both structures consist of corner-sharing {InO4(OH)2} octahedra in the form of trans indium hydroxide chains, which are interconnected by the dicarboxylate linkers to form stacked 2-dimensional layers. The different symmetries and configurations of the flexible and rigid features on the linkers results in different supramolecular interactions dominating between linkers, resulting in different shaped pores and functional group orientation. In(OH)CSA lacks hydrogen bonding between linkers, which results in close packing between the layers and very small solvent accessible pores running perpendicular to the plane of the layers. In(OH)PDG exhibits strong intra- and interlayer hydrogen bonding, which prevents the layers from close packing and results in larger cylindrical pores running parallel to the indium hydroxide chains, producing a total accessible volume of 25% of the unit cell volume.

4.
Nature ; 546(7657): 280-284, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28593963

RESUMO

The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios. Computational methods have been developed to guide synthesis by predicting structures at specific compositions and predicting compositions for known crystal structures, with notable successes. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them.

5.
Nat Chem ; 9(7): 644-652, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28644481

RESUMO

Alkali metal intercalation into polyaromatic hydrocarbons (PAHs) has been studied intensely after reports of superconductivity in a number of potassium- and rubidium-intercalated materials. There are, however, no reported crystal structures to inform our understanding of the chemistry and physics because of the complex reactivity of PAHs with strong reducing agents at high temperature. Here we present the synthesis of crystalline K2Pentacene and K2Picene by a solid-solid insertion protocol that uses potassium hydride as a redox-controlled reducing agent to access the PAH dianions, and so enables the determination of their crystal structures. In both cases, the inserted cations expand the parent herringbone packings by reorienting the molecular anions to create multiple potassium sites within initially dense molecular layers, and thus interact with the PAH anion π systems. The synthetic and crystal chemistry of alkali metal intercalation into PAHs differs from that into fullerenes and graphite, in which the cation sites are pre-defined by the host structure.

6.
Nat Commun ; 8: 14543, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28216631

RESUMO

Entanglement is a crucial resource for quantum information processing and its detection and quantification is of paramount importance in many areas of current research. Weakly coupled molecular nanomagnets provide an ideal test bed for investigating entanglement between complex spin systems. However, entanglement in these systems has only been experimentally demonstrated rather indirectly by macroscopic techniques or by fitting trial model Hamiltonians to experimental data. Here we show that four-dimensional inelastic neutron scattering enables us to portray entanglement in weakly coupled molecular qubits and to quantify it. We exploit a prototype (Cr7Ni)2 supramolecular dimer as a benchmark to demonstrate the potential of this approach, which allows one to extract the concurrence in eigenstates of a dimer of molecular qubits without diagonalizing its full Hamiltonian.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...