Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 755(Pt 1): 142468, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33032131

RESUMO

The livelihoods of millions of people living in the world's deltas are deeply interconnected with the sediment dynamics of these deltas. In particular a sustainable supply of fluvial sediments from upstream is critical for ensuring the fertility of delta soils and for promoting sediment deposition that can offset rising sea levels. Yet, in many large river catchments this supply of sediment is being threatened by the planned construction of large dams. In this study, we apply the INCA hydrological and sediment model to the Mekong River catchment in South East Asia. The aim is to assess the impact of several large dams (both existing and planned) on the suspended sediment fluxes of the river. We force the INCA model with a climate model to assess the interplay of changing climate and sediment trapping caused by dam construction. The results show that historical sediment flux declines are mostly caused by dams built in PR China and that sediment trapping will increase in the future due to the construction of new dams in PDR Lao and Cambodia. If all dams that are currently planned for the next two decades are built, they will induce a decline of suspended sediment flux of 50% (47-53% 90% confidence interval (90%CI)) compared to current levels (99 Mt/year at the delta apex), with potentially damaging consequences for local livelihoods and ecosystems.

2.
Sci Total Environ ; 646: 1459-1467, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30235631

RESUMO

Pharmaceuticals, personal care products (PPCPs), and artificial sweeteners (ASWs) are contaminants of emerging concern commonly found in the aquatic environments. In India, studies reporting environmental occurrence of these contaminants are scarce. In this study, we investigated the occurrence and distribution of 15 PPCPs and five ASWs in the river and groundwater (used untreated as drinking water) at several sites along the Ganges River. Based on the measured groundwater concentrations, we estimated the life-long human health risk from exposure to PPCPs through drinking. In addition, we estimated the risk of exposure to PPCPs and ASWs in the river water for aquatic organisms. The sum of detected PPCPs in the river water ranged between 54.7-826 ng/L, with higher concentrations in the severely anthropogenically influenced middle and lower reaches of the Ganges. The highest concentration among the PPCPs in the river water was of caffeine (743 ng/L). The sum of detected ASWs in river water ranged between 0.2-102 ng/L. Similar to PPCPs, the sum of ASWs in the river water was higher in the middle and lower reaches of the Ganges. In groundwater, the sum of detected PPCPs ranged between 34-293 ng/L, whereas of ASWs ranged between 0.5-25 ng/L. Negligible risk for humans was estimated from PPCPs in the drinking groundwater sources along the Ganges River, whereas moderate risks to PPCPs and ASWs (namely: caffeine, sulfamethoxazole, triclocarban, triclosan, and sucralose) were estimated for aquatic organisms in the Ganges River.


Assuntos
Cosméticos/análise , Monitoramento Ambiental , Preparações Farmacêuticas/análise , Edulcorantes/análise , Poluentes Químicos da Água/análise , Água Potável/química , Água Subterrânea/química , Humanos , Índia , Medição de Risco , Rios/química
3.
Sci Total Environ ; 636: 1362-1372, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29913597

RESUMO

The Ganga-Brahmaputra-Meghna (GBM) River System, the associated Hooghly River and the Mahanadi River System represent the largest river basins in the world serving a population of over 780 million. The rivers are of vital concern to India and Bangladesh as they provide fresh water for people, agriculture, industry, conservation and support the Delta System in the Bay of Bengal. Future changes in both climate and socio-economics have been investigated to assess whether these will alter river flows and water quality. Climate datasets downscaled from three different Global Climate Models have been used to drive a daily process based flow and water quality model. The results suggest that due to climate change the flows will increase in the monsoon period and also be enhanced in the dry season. However, once socio-economic changes are also considered, increased population, irrigation, water use and industrial development reduce water availability in drought conditions, threatening water supplies and posing a threat to river and coastal ecosystems. This study, as part of the DECCMA (Deltas, vulnerability and Climate Change: Migration and Adaptation) project, also addresses water quality issues, particularly nutrients (N and P) and their transport along the rivers and discharge into the Delta System. Climate will alter flows, increasing flood flows and changing pollution dilution factors in the rivers, as well as other key processes controlling water quality. Socio-economic change will affect water quality, as water diversion strategies, increased population and industrial development alter the water balance and enhance fluxes of nutrients from agriculture, urban centers and atmospheric deposition.

4.
Sci Total Environ ; 637-638: 1069-1080, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29801202

RESUMO

As the scientific consensus concerning global climate change has increased in recent decades, research on potential impacts of climate change on water resources has been given high importance. However in Sub-Saharan Africa, few studies have fully evaluated the potential implications of climate change to their water resource systems. The Volta River is one of the major rivers in Africa covering six riparian countries (mainly Ghana and Burkina Faso). It is a principal water source for approximately 24 million people in the region. The catchment is primarily agricultural providing food supplies to rural areas, demonstrating the classic water, food, energy nexus. In this study an Integrated Catchment Model (INCA) was applied to the whole Volta River system to simulate flow in the rivers and at the outlet of the artificial Lake Volta. High-resolution climate scenarios downscaled from three different Global Climate Models (CNRM-CM5, HadGEM2-ES and CanESM2), have been used to drive the INCA model and to assess changes in flow by 2050s and 2090s under the high climate forcing scenario RCP8.5. Results show that peak flows during the monsoon months could increase into the future. The duration of high flow could become longer compared to the recent condition. In addition, we considered three different socio-economic scenarios. As an example, under the combined impact from climate change from downscaling CNRM-CM5 and medium+ (high economic growth) socio-economic changes, the extreme high flows (Q5) of the Black Volta River are projected to increase 11% and 36% at 2050s and 2090s, respectively. Lake Volta outflow would increase +1% and +5% at 2050s and 2090s, respectively, under the same scenario. The effects of changing socio-economic conditions on flow are minor compared to the climate change impact. These results will provide valuable information assisting future water resource development and adaptive strategies in the Volta Basin.

5.
Sci Total Environ ; 637-638: 907-917, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29763871

RESUMO

Delta systems formed by the deposition of sediments at the mouths of large catchments are vulnerable to sea level rise and other climate change impacts. Deltas often have some of the highest population densities in the world and the Mahanadi Delta in India is one of these, with a population of 39 million. The Mahanadi River is a major river in East Central India and flows through Chattisgarh and Orissa states before discharging into the Bay of Bengal. This study uses an Integrated Catchment Model (INCA) to simulate flow dynamics and water quality (nitrogen and phosphorus) and to analyze the impacts of climate change and socio-economic drivers in the Mahanadi River system. Future flows affected by large population growth, effluent discharge increases and changes in irrigation water demand from changing land uses are assessed under shared socio-economic pathways (SSPs). Model results indicate a significant increase in monsoon flows under the future climates at 2050s (2041-2060) and 2090s (2079-2098) which greatly enhances flood potential. The water availability under low flow conditions will be worsened because of increased water demand from population growth and increased irrigation in the future. Decreased concentrations of nitrogen and phosphorus are expected due to increased flow hence dilution. Socio-economic scenarios have a significant impact on water quality but less impact on the river flow. For example, higher population growth, increased sewage treatment discharges, land use change and enhanced atmospheric deposition would result in the deterioration of water quality, while the upgrade of the sewage treatment works lead to improved water quality. In summary, socio-economic scenarios would change future water quality of the Mahanadi River and alter nutrient fluxes transported into the delta region. This study has serious implications for people's livelihoods in the deltaic area and could impact coastal and Bay of Bengal water ecology.


Assuntos
Mudança Climática , Rios/química , Qualidade da Água , Abastecimento de Água/estatística & dados numéricos , Índia , Fatores Socioeconômicos
6.
Sci Total Environ ; 631-632: 201-215, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524896

RESUMO

The present study analyzes the water quality characteristics of the Ramganga (a major tributary of the Ganga river) using long-term (1991-2009) monthly data and applies the Integrated Catchment Model of Nitrogen (INCA-N) and Phosphorus (INCA-P) to the catchment. The models were calibrated and validated using discharge (1993-2011), phosphate (1993-2010) and nitrate (2007-2010) concentrations. The model results were assessed based on Pearson's correlation, Nash-Sutcliffe and Percentage bias statistics along with a visual inspection of the outputs. The seasonal variation study shows high nutrient concentrations in the pre-monsoon season compared to the other seasons. High nutrient concentrations in the low flows period pose a serious threat to aquatic life of the river although the concentrations are lowered during high flows because of the dilution effect. The hydrological model is satisfactorily calibrated with R2 and NS values ranging between 0.6-0.8 and 0.4-0.8, respectively. INCA-N and INCA-P successfully capture the seasonal trend of nutrient concentrations with R2>0.5 and PBIAS within ±17% for the monthly averages. Although, high concentrations are detected in the low flows period, around 50% of the nutrient load is transported by the monsoonal high flows. The downstream catchments are characterized by high nutrient transport through high flows where additional nutrient supply from industries and agricultural practices also prevail. The seasonal nitrate (R2: 0.88-0.94) and phosphate (R2: 0.62-0.95) loads in the catchment are calculated using model results and ratio estimator load calculation technique. On average, around 548tonnes of phosphorus (as phosphate) and 77,051tonnes of nitrogen (as nitrate) are estimated to be exported annually from the Ramganga River to the Ganga. Overall, the model has been able to successfully reproduce the catchment dynamics in terms of seasonal variation and broad-scale spatial variability of nutrient fluxes in the Ramganga catchment.

7.
Sci Total Environ ; 627: 733-743, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426198

RESUMO

Interactions between climate change and land use change might have substantial effects on aquatic ecosystems, but are still poorly understood. Using the Welsh River Wye as a case study, we linked models of water quality (Integrated Catchment - INCA) and climate (GFDL - Geophysical Fluid Dynamics Laboratory and IPSL - Institut Pierre Simon Laplace) under greenhouse gas scenarios (RCP4.5 and RCP8.5) to drive a bespoke ecosystem model that simulated the responses of aquatic organisms. The potential effects of economic and social development were also investigated using scenarios from the EU MARS project (Managing Aquatic Ecosystems and Water Resources under Multiple Stress). Longitudinal position along the river mediated response to increasing anthropogenic pressures. Upland locations appeared particularly sensitive to nutrient enrichment or potential re-acidification compared to lowland environments which are already eutrophic. These results can guide attempts to mitigate future impacts and reiterate the need for sensitive land management in upland, temperate environments which are likely to become increasingly important to water supply and biodiversity conservation as the effects of climate change intensify.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental/métodos , Modelos Teóricos , Rios/química , Ecologia , Guanina/análogos & derivados , País de Gales
8.
Sci Total Environ ; 590-591: 818-831, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28285854

RESUMO

The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames.

9.
Environ Sci Process Impacts ; 18(8): 1050-9, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27255969

RESUMO

The presence of microplastics (MPs) in the environment is a problem of growing concern. While research has focused on MP occurrence and impacts in the marine environment, very little is known about their release on land, storage in soils and sediments and transport by run-off and rivers. This study describes a first theoretical assessment of these processes. A mathematical model of catchment hydrology, soil erosion and sediment budgets was upgraded to enable description of MP fate. The Thames River in the UK was used as a case study. A general lack of data on MP emissions to soils and rivers and the mass of MPs in agricultural soils, limits the present work to serve as a purely theoretical, nevertheless rigorous, assessment that can be used to guide future monitoring and impact evaluations. The fundamental assumption on which modelling is based is that the same physical controls on soil erosion and natural sediment transport (for which model calibration and validation are possible), also control MP transport and storage. Depending on sub-catchment soil characteristics and precipitation patterns, approximately 16-38% of the heavier-than-water MPs hypothetically added to soils (e.g. through routine applications of sewage sludge) are predicted to be stored locally. In the stream, MPs < 0.2 mm are generally not retained, regardless of their density. Larger MPs with densities marginally higher than water can instead be retained in the sediment. It is, however, anticipated that high flow periods can remobilize this pool. Sediments of river sections experiencing low stream power are likely hotspots for deposition of MPs. Exposure and impact assessments should prioritize these environments.


Assuntos
Modelos Teóricos , Plásticos , Rios , Poluentes do Solo , Poluentes da Água , Agricultura , Monitoramento Ambiental , Sedimentos Geológicos , Solo
10.
Sci Total Environ ; 568: 381-390, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27304372

RESUMO

This paper considers the long-term (500year) consequences of continued acid deposition, using a small forested catchment in S. England as an example. The MAGIC acidification model was calibrated to the catchment using data for the year 2000, and run backwards in time for 200years, and forwards for 500. Validation data for model predictions were provided by various stream and soil measurements made between 1977 and 2013. The model hindcast suggests that pre-industrial stream conditions were very different from those measured in 2000. Acid Neutralising Capacity (ANC) was +150µeqL(-1) and pH7.1: there was little nitrate (NO3). By the year 2000, acid deposition had reduced the pH to 4.2 and ANC to c. -100µeqL(-1), and NO3 was increasing in the stream. The future state of the catchment was modelled using actual deposition reductions up to 2013, and then based on current emission reduction commitments. This leads to substantial recovery, to pH6.1, ANC +43µeqL(-1), though it takes c. 250years. Then, however, steady acidification resumes, due to continued N accumulation in the catchment and leaching of NO3. Soil data collected using identical methods in 1978 and 2013 show that MAGIC correctly predicts the direction of change, but the observed data show more extreme changes - reasons for this are discussed. Three cycles of forest growth were modelled - this reduces NO3 output substantially during the active growth phase, and increases stream pH and ANC, but acidifies the soil which continues to accumulate nitrogen. The assumptions behind these results are discussed, and it is concluded that unmanaged ecosystems will not return to a pre-industrial state in the foreseeable future.

11.
Sci Total Environ ; 572: 1496-1506, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26953139

RESUMO

Managing diffuse pollution in catchments is a major issue for environmental managers planning to meet water quality standards and comply with the EU Water Framework Directive. A major source of diffuse pollution is from nitrogen, with high nitrate concentrations affecting water supplies and in-stream ecology. A dynamic, process based model of flow, nitrate and ammonium (INCA-N) has been applied to the Hampshire Avon as part of the NERC Macronutrient Cycles Programme to link upstream and downstream measurements of water chemistry. The model has been calibrated and validated against Environment Agency discharge and solute chemistry data, as well as a data set collected from a river site immediately upstream of the estuary tidal limit. Upstream measurements of denitrification at six sites have been used to evaluate nitrate removal rates in vegetated and non-vegetated conditions. Results show that sediments underlying vegetation were associated with significantly higher rates of nitrate removal than un-vegetated sediments (with an average increase of 245%). These data have been used to scale up rates of nitrate loss to the whole catchment scale and have been implemented via the model. The effects of streambed geology and macrophyte cover on catchment-scale nitrogen dynamics are explored and nutrient fluxes entering the estuary are evaluated. The model is used to test a strategy for nitrogen reduction assessed using a nitrate vulnerable zone (NVZ) methodology. It suggests that nitrate and ammonium concentrations could be reduced by 10% in 10years and much lower nitrogen level can be achieved but only over a long time period.


Assuntos
Compostos de Amônio/análise , Nitratos/análise , Movimentos da Água , Desnitrificação , Inglaterra , Monitoramento Ambiental , Modelos Teóricos , Rios , Poluentes Químicos da Água/análise , Qualidade da Água
12.
Sci Total Environ ; 572: 1507-1519, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26927961

RESUMO

Potential increases of phytoplankton concentrations in river systems due to global warming and changing climate could pose a serious threat to the anthropogenic use of surface waters. Nevertheless, the extent of the effect of climatic alterations on phytoplankton concentrations in river systems has not yet been analysed in detail. In this study, we assess the impact of a change in precipitation and temperature on river phytoplankton concentration by means of a physically-based model. A scenario-neutral methodology has been employed to evaluate the effects of climate alterations on flow, phosphorus concentration and phytoplankton concentration of the River Thames (southern England). In particular, five groups of phytoplankton are considered, representing a range of size classes and pigment phenotypes, under three different land-use/land-management scenarios to assess their impact on phytoplankton population levels. The model results are evaluated within the framework of future climate projections, using the UK Climate Projections 09 (UKCP09) for the 2030s. The results of the model demonstrate that an increase in average phytoplankton concentration due to climate change is highly likely to occur, with the magnitude varying depending on the location along the River Thames. Cyanobacteria show significant increases under future climate change and land use change. An expansion of intensive agriculture accentuates the growth in phytoplankton, especially in the upper reaches of the River Thames. However, an optimal phosphorus removal mitigation strategy, which combines reduction of fertiliser application and phosphorus removal from wastewater, can help to reduce this increase in phytoplankton concentration, and in some cases, compensate for the effect of rising temperature.


Assuntos
Agricultura , Mudança Climática , Fósforo/análise , Fitoplâncton/fisiologia , Rios/química , Poluentes Químicos da Água/análise , Inglaterra , Modelos Teóricos
13.
Environ Pollut ; 208(Pt B): 704-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26561452

RESUMO

Many perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants. They have been widely used in production processes and daily-use products or may result from degradation of precursor compounds in products or the environment. India, with its developing industrialization and population moving from traditional to contemporary lifestyles, represents an interesting case study to investigate PFAS emission and exposure along steep environmental and socioeconomic gradients. This study assesses PFAS concentrations in river and groundwater (used in this region as drinking water) from several locations along the Ganges River and estimates direct emissions, specifically for PFOS and PFOA. 15 PFAS were frequently detected in the river with the highest concentrations observed for PFHxA (0.4-4.7 ng L(-1)) and PFBS (

Assuntos
Água Potável/análise , Monitoramento Ambiental/métodos , Fluorocarbonos/análise , Água Subterrânea/química , Rios/química , Poluentes Químicos da Água/análise , Água Potável/normas , Humanos , Índia
15.
PLoS One ; 8(9): e74054, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023925

RESUMO

In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff.


Assuntos
Mudança Climática/estatística & dados numéricos , Inundações/estatística & dados numéricos , Camada de Gelo , Modelos Estatísticos , Tempo (Meteorologia) , Alaska , Hidrologia , Rios , Temperatura
16.
Sci Total Environ ; 409(12): 2404-18, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21458029

RESUMO

Recent research in catchments of rapidly developing countries such as Brazil and China suggests that many catchments of the developing world are already showing signs of nitrogen pollution reminiscent of past experiences in developed countries. This paper looks at both the individual and combined effects of future climate change and other likely environmental changes on in-stream nitrate concentrations in a catchment in Northern Turkey. A model chain comprised of simulated future temperature and precipitation from a Regional Circulation Model (RCM), a conceptual hydrological model (HBV) and a widely tested integrated catchment nitrogen model (INCA-N) is used to model future changes in nitrate concentrations. Two future periods (2021-2050 and 2069-2098) are compared to the 1961-1990 baseline period in order to assess the effectiveness of several possible interventions available to catchment authorities. The simulations show that in the urbanised part of the catchment, the effects of climate change and other environmental changes act in the same direction, leading to peak nitrate concentrations of 7.5 mg N/l for the 2069-2098 period, which corresponds to a doubling of the baseline values. Testing different available policy options reveals that the installation of wastewater treatment works (WWTWs) in all major settlements of the catchment could ensure nitrate levels are kept at near their baseline values for the 2021-2050 period. Nevertheless, a combination of measures including WWTWs, meadow creation, international agreements to reduce atmospheric N concentrations and controls on agricultural practises will be required for 2069-2098. The approach presented in this article could be employed in order to anticipate future pollution problems and to test appropriate solutions, some of which will necessitate international co-operation, in other catchments around the world.


Assuntos
Modelos Químicos , Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Mudança Climática , Conservação dos Recursos Naturais/métodos , Nitrogênio/química , Crescimento Demográfico , Turquia , Movimentos da Água , Poluentes Químicos da Água/química , Poluição Química da Água/estatística & dados numéricos
17.
Sci Total Environ ; 408(12): 2555-66, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20347117

RESUMO

There is a need for better links between hydrology and ecology, specifically between landscapes and riverscapes to understand how processes and factors controlling the transport and storage of environmental pollution have affected or will affect the freshwater biota. Here we show how the INCA modelling framework, specifically INCA-Sed (the Integrated Catchments model for Sediments) can be used to link sediment delivery from the landscape to sediment changes in-stream. INCA-Sed is a dynamic, process-based, daily time step model. The first complete description of the equations used in the INCA-Sed software (version 1.9.11) is presented. This is followed by an application of INCA-Sed made to the River Lugg (1077 km(2)) in Wales. Excess suspended sediment can negatively affect salmonid health. The Lugg has a large and potentially threatened population of both Atlantic salmon (Salmo salar) and Brown Trout (Salmo trutta). With the exception of the extreme sediment transport processes, the model satisfactorily simulated both the hydrology and the sediment dynamics in the catchment. Model results indicate that diffuse soil loss is the most important sediment generation process in the catchment. In the River Lugg, the mean annual Guideline Standard for suspended sediment concentration, proposed by UKTAG, of 25 mg l(-1) is only slightly exceeded during the simulation period (1995-2000), indicating only minimal effect on the Atlantic salmon population. However, the daily time step simulation of INCA-Sed also allows the investigation of the critical spawning period. It shows that the sediment may have a significant negative effect on the fish population in years with high sediment runoff. It is proposed that the fine settled particles probably do not affect the salmonid egg incubation process, though suspended particles may damage the gills of fish and make the area unfavourable for spawning if the conditions do not improve.


Assuntos
Pesqueiros , Sedimentos Geológicos/análise , Modelos Químicos , Rios/química , Poluentes da Água/análise , Animais , Sedimentos Geológicos/química , Cinética , Salmão/crescimento & desenvolvimento , Movimentos da Água
18.
Sci Total Environ ; 338(1-2): 23-39, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15680624

RESUMO

In January 1992, there was a major pollutant event for the River Carnon and downstream with its confluence to the River Fal and the Fal estuary in the west Cornwall. This incident was associated with the discharge of several million gallons of highly polluted water from the abandoned Wheal Jane tin mine that also extracted Ag, Cu and Zn ore. Later that year, the Centre for Ecology and Hydrology (CEH; then Institute of Hydrology) Wallingford undertook daily monitoring of the River Carnon for a range of major, minor and trace elements to assess the nature and the dynamics of the pollutant discharges. These data cover an 18-month period when there remained major water-quality problems after the initial phase of surface water contamination. Here, a summary is provided of the water quality found, as a backdrop to set against subsequent remediation. Two types of water-quality determinant grouping were observed. The first type comprises the determinants B, Cs, Ca, Li, K, Na, SO4, Rb and Sr, and their concentrations are positively correlated with each other but inversely correlated with flow. This type of water-quality determinant shows variations in concentration that broadly link to the normal hydrogeochemical processes within the catchment, with limited confounding issues associated with mine drainage. The second type of water-quality determinant comprises Al, Be, Cd, Ce, Co, Cu, Fe, La, Pb, Pr, Nd, Ni, Si, Sb, U, Y and Zn, and concentrations for all this group are positively correlated. The determinants in this second group all have concentrations that are negatively correlated with pH. This group links primarily to pollutant mine discharge. The water-quality variations in the River Carnon are described in relation to these two distinct hydrogeochemical groupings.


Assuntos
Água Doce/química , Poluentes Químicos da Água/análise , Compostos de Alúmen/análise , Concentração de Íons de Hidrogênio , Elementos da Série dos Lantanídeos/análise , Mineração , Oligoelementos/análise , Reino Unido , Purificação da Água/métodos
20.
Sci Total Environ ; 282-283: 471-90, 2002 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-11846085

RESUMO

This paper brings together information on the water quality functioning of the River Kennet and other parts of the upper River Thames in the south east of England. The Kennet represents a groundwater fed riverine environment impacted by agricultural and sewage sources of nutrient pollution. Descriptions of the general water quality of the area, nutrient sources, sinks and within river processes are provided together with biological responses to driving issues of agriculture, sewage treatment and climatic change. Models are developed and applied to assess the key processes involved for a highly dynamic system and to provide initial estimates of the likely responses to environmental change. Furthermore, the economic aspects of pollution control are reviewed, together with legislation issues, which are presented within the context of a landmark case known as the 'Axford Inquiry', the implications of which extend to regional and national dimensions. The paper concludes with a discussion on the present state of knowledge, key issues and future research on the science and management of groundwater fed nutrient impacted riverine systems.


Assuntos
Eutrofização , Modelos Teóricos , Fósforo/análise , Poluentes da Água/análise , Agricultura , Inglaterra , Permeabilidade , Fósforo/química , Plantas , Política Pública , Esgotos , Solo , Solubilidade , Água/química , Poluição da Água/economia , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...