Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1376061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742212

RESUMO

Powdery mildew is one of the most problematic diseases in strawberry production. To date, few commercial strawberry cultivars are deemed to have complete resistance and as such, an extensive spray programme must be implemented to control the pathogen. Here, a large-scale field experiment was used to determine the powdery mildew resistance status of leaf and fruit tissues across a diverse panel of strawberry genotypes. This phenotypic data was used to identify Quantitative Trait Nucleotides (QTN) associated with tissue-specific powdery mildew resistance. In total, six stable QTN were found to be associated with foliar resistance, with one QTN on chromosome 7D associated with a 61% increase in resistance. In contrast to the foliage results, there were no QTN associated with fruit disease resistance and there was a high level of resistance observed on strawberry fruit, with no genetic correlation observed between fruit and foliar symptoms, indicating a tissue-specific response. Beyond the identification of genetic loci, we also demonstrate that genomic selection can lead to rapid gains in foliar resistance across genotypes, with the potential to capture >50% of the genetic foliage resistance present in the population. To date, breeding of robust powdery mildew resistance in strawberry has been impeded by the quantitative nature of natural resistance and a lack of knowledge relating to the genetic control of the trait. These results address this shortfall, through providing the community with a wealth of information that could be utilized for genomic informed breeding, implementation of which could deliver a natural resistance strategy for combatting powdery mildew.

2.
Front Plant Sci ; 12: 724847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675948

RESUMO

Over the last two centuries, breeders have drastically modified the fruit quality of strawberries through artificial selection. However, there remains significant variation in quality across germplasm with scope for further improvements to be made. We reported extensive phenotyping of fruit quality and yield traits in a multi-parental strawberry population to allow genomic prediction and quantitative trait nucleotide (QTN) identification, thereby enabling the description of genetic architecture to inform the efficacy of implementing advanced breeding strategies. A negative relationship (r = -0.21) between total soluble sugar content and class one yield was identified, indicating a trade-off between these two essential traits. This result highlighted an established dilemma for strawberry breeders and a need to uncouple the relationship, particularly under June-bearing, protected production systems comparable to this study. A large effect of quantitative trait nucleotide was associated with perceived acidity and pH whereas multiple loci were associated with firmness. Therefore, we recommended the implementation of both marker assisted selection (MAS) and genomic prediction to capture the observed variation respectively. Furthermore, we identified a large effect locus associated with a 10% increase in the number of class one fruit and a further 10 QTN which, when combined, are associated with a 27% increase in the number of marketable strawberries. Ultimately, our results suggested that the best method to improve strawberry yield is through selecting parental lines based upon the number of marketable fruits produced per plant. Not only were strawberry number metrics less influenced by environmental fluctuations, but they had a larger additive genetic component when compared with mass traits. As such, selecting using "number" traits should lead to faster genetic gain.

3.
Hortic Res ; 6: 60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069084

RESUMO

The cultivated strawberry, Fragaria × ananassa (Fragaria spp.) is the most economically important global soft fruit. Phytophthora cactorum, a water-borne oomycete causes economic losses in strawberry production globally. A bi-parental cross of octoploid cultivated strawberry segregating for resistance to P. cactorum, the causative agent of crown rot disease, was screened using artificial inoculation. Multiple putative resistance quantitative trait loci (QTL) were identified and mapped. Three major effect QTL (FaRPc6C, FaRPc6D and FaRPc7D) explained 37% of the variation observed. There were no epistatic interactions detected between the three major QTLs. Testing a subset of the mapping population progeny against a range of P. cactorum isolates revealed no significant interaction (p = 0.0593). However, some lines showed higher susceptibility than predicted, indicating that additional undetected factors may affect the expression of some quantitative resistance loci. Using historic crown rot disease score data from strawberry accessions, a preliminary genome-wide association study (GWAS) of 114 individuals revealed an additional locus associated with resistance to P. cactorum. Mining of the Fragaria vesca Hawaii 4 v1.1 genome revealed candidate resistance genes in the QTL regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...