Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 27(5): 2857-2870, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27178194

RESUMO

Converging preclinical and human evidence indicates that the decline in ovarian estradiol production during the menopausal transition may play a mechanistic role in the neuronal changes that occur early in the aging process. Here, we present findings from a population-based fMRI study characterizing regional and network-level differences in working memory (WM) circuitry in midlife men and women (N = 142; age range 46-53), as a function of sex and reproductive stage. Reproductive histories and hormonal evaluations were used to determine menopausal status. Participants performed a verbal WM task during fMRI scanning. Results revealed robust differences in task-evoked responses in dorsolateral prefrontal cortex and hippocampus as a function of women's reproductive stage, despite minimal variance in chronological age. Sex differences in regional activity and functional connectivity that were pronounced between men and premenopausal women were diminished for postmenopausal women. Critically, analyzing data without regard to sex or reproductive status obscured group differences in the circuit-level neural strategies associated with successful working memory performance. These findings underscore the importance of reproductive age and hormonal status, over and above chronological age, for understanding sex differences in the aging of memory circuitry. Further, these findings suggest that early changes in working memory circuitry are evident decades before the age range typically targeted in cognitive aging studies.


Assuntos
Hipocampo/fisiologia , Memória de Curto Prazo/fisiologia , Menopausa/fisiologia , Córtex Pré-Frontal/fisiologia , Caracteres Sexuais , Aprendizagem Verbal/fisiologia , Fatores Etários , Feminino , Gonadotropinas/metabolismo , Hipocampo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Oxigênio/sangue , Córtex Pré-Frontal/diagnóstico por imagem , Gravidez , Esteroides/metabolismo
2.
J Neurosci ; 36(39): 10163-73, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27683911

RESUMO

UNLABELLED: Cognitive neuroscience of aging studies traditionally target participants age 65 and older. However, epidemiological surveys show that many women report increased forgetfulness earlier in the aging process, as they transition to menopause. In this population-based fMRI study, we stepped back by over a decade to characterize the changes in memory circuitry that occur in early midlife, as a function of sex and women's reproductive stage. Participants (N = 200; age range, 45-55) performed a verbal encoding task during fMRI scanning. Reproductive histories and serologic evaluations were used to determine menopausal status. Results revealed a pronounced impact of reproductive stage on task-evoked hippocampal responses, despite minimal difference in chronological age. Next, we examined the impact of sex and reproductive stage on functional connectivity across task-related brain regions. Postmenopausal women showed enhanced bilateral hippocampal connectivity relative to premenopausal and perimenopausal women. Across women, lower 17ß-estradiol concentrations were related to more pronounced alterations in hippocampal connectivity and poorer performance on a subsequent memory retrieval task, strongly implicating sex steroids in the regulation of this circuitry. Finally, subgroup analyses revealed that high-performing postmenopausal women (relative to low and middle performers) exhibited a pattern of brain activity akin to premenopausal women. Together, these findings underscore the importance of considering reproductive stage, not simply chronological age, to identify neuronal and cognitive changes that unfold in the middle decades of life. In keeping with preclinical studies, these human findings suggest that the decline in ovarian estradiol production during menopause plays a significant role in shaping memory circuitry. SIGNIFICANCE STATEMENT: Maintaining intact memory function with age is one of the greatest public health challenges of our time, and women have an increased risk for memory disorders relative to men later in life. We studied adults early in the aging process, as women transition into menopause, to identify neuronal and cognitive changes that unfold in the middle decades of life. Results demonstrate regional and network-level differences in memory encoding-related activity as a function of women's reproductive stage, independent of chronological age. Analyzing data without regard to sex or menopausal status obscured group differences in circuit-level neural strategies associated with successful memory retrieval. These findings suggest that early changes in memory circuitry are evident decades before the age range traditionally targeted by cognitive neuroscience of aging studies.


Assuntos
Envelhecimento/fisiologia , Hipocampo/fisiologia , Memória Episódica , Menopausa/fisiologia , Rede Nervosa/fisiologia , Caracteres Sexuais , Feminino , Humanos , Masculino , Rememoração Mental , Pessoa de Meia-Idade , Análise e Desempenho de Tarefas
3.
Neuropsychopharmacology ; 40(3): 566-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25113601

RESUMO

Many regions within stress neurocircuitry, including the anterior hypothalamus, amygdala, hippocampus, and medial prefrontal cortex, are densely populated with sex steroid receptors. Substantial evidence from animal studies indicates that the gonadal hormone 17ß-estradiol (E2) impacts the structure and function of these regions, but human studies are limited. Characterizing estradiol's role in stress circuitry in vivo in humans may have important clinical implications given the comorbidity between major depressive disorder (MDD), stress circuitry dysfunction and endocrine dysregulation. In this study, we determined estradiol's role in modulating activity within cortical and subcortical stress circuitry regions in healthy and MDD women. Subjects were part of a population-based birth cohort, the New England Family Study. Capitalizing on the endogenous fluctuation in E2 during the menstrual cycle, we conducted a within-person repeated-measures functional neuroimaging study in which 15 women with recurrent MDD, in remission, and 15 healthy control women underwent hormonal evaluations, behavioral testing, and fMRI scanning on two occasions, under low and high E2 conditions. Subjects completed an fMRI scan while undergoing a mild visual stress challenge that reliably activated stress neural circuitry. Results demonstrate that E2 modulates activity across key stress circuitry regions, including bilateral amygdala, hippocampus, and hypothalamus. In healthy women, robust task-evoked BOLD signal changes observed under low E2 conditions were attenuated under high E2 conditions. This hormonal capacity to regulate activity in stress circuitry was not observed in MDD women, despite their remitted status, suggesting that dysregulation of gonadal hormone function may be a characteristic trait of the disease. These findings serve to deepen our understanding of estradiol's actions in the healthy brain and the neurobiological mechanisms that may underlie the pronounced sex difference in MDD risk.


Assuntos
Encéfalo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Estradiol/fisiologia , Adulto , Afeto/fisiologia , Ansiedade/fisiopatologia , Estudos de Casos e Controles , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/psicologia , Estradiol/sangue , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Estimulação Luminosa , Progesterona/sangue , Testosterona/sangue
4.
Front Hum Neurosci ; 4: 218, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21151779

RESUMO

The default mode network (DMN) refers to regional brain activity that is greater during rest periods than during attention-demanding tasks; many studies have reported DMN alterations in patient populations. It has also been shown that the DMN is suppressed by scanner background noise (SBN), which is the noise produced by functional magnetic resonance imaging (fMRI). However, it is unclear whether different approaches to "rest" in the noisy MR environment can alter the DMN and constitute a confound in studies investigating the DMN in particular patient populations (e.g., individuals with schizophrenia, Alzheimer's disease). We examined 27 healthy adult volunteers who completed an fMRI experiment with three different instructions for rest: (1) relax and be still, (2) attend to SBN, or (3) ignore SBN. Region of interest analyses were performed to determine the influence of rest period instructions on core regions of the DMN and DMN regions previously reported to be altered in patients with or at risk for Alzheimer's disease or schizophrenia. The dorsal medial prefrontal cortex (dmPFC) exhibited greater activity when specific resting instructions were given (i.e., attend to or ignore SBN) compared to when non-specific resting instructions were given. Condition-related differences in connectivity were also observed between regions of the dmPFC and inferior parietal/posterior superior temporal cortex. We conclude that rest period instructions and SBN levels should be carefully considered for fMRI studies on the DMN, especially studies on clinical populations and groups that may have different approaches to rest, such as first-time research participants and children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...