Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507737

RESUMO

Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

2.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37461469

RESUMO

Purpose: Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. Experimental design: We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. Results: We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. Conclusion: This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

3.
Antimicrob Agents Chemother ; 67(4): e0142522, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36920244

RESUMO

Recent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong in vitro safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice. Both BKI-1770 and BKI-1841 had efficacy in the C. parvum newborn calf model, reducing diarrhea and oocyst excretion. However, both compounds caused hyperflexion of the limbs seen as dropped pasterns. Toxicity experiments in rats and calves dosed with BKI-1770 showed enlargement of the epiphyseal growth plate at doses only slightly higher than the efficacious dose. Mice were used as a screen to check for bone toxicity, by changes to the tibia epiphyseal growth plate, or neurological causes, by use of a locomotor activity box. These results showed neurological effects from both BKI-1770 and BKI-1841 and bone toxicity in mice from BKI-1770, indicating one or both effects may be contributing to toxicity. However, BKI-1708 remains a viable treatment candidate for further evaluation as it showed no signs of bone toxicity or neurological effects in mice.


Assuntos
Antineoplásicos , Antiprotozoários , Criptosporidiose , Cryptosporidium parvum , Animais , Bovinos , Camundongos , Ratos , Criptosporidiose/tratamento farmacológico , Antiprotozoários/farmacologia , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Oocistos
4.
J Clin Microbiol ; 60(8): e0043122, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35913145

RESUMO

Testing for mycobacterial lipoarabinomannan (LAM) in urine is a practical but insensitive alternative to sputum testing to diagnose tuberculosis (TB) in people with HIV (PWH). Here, we evaluated urine LAM testing alongside PCR-based tests for Mycobacterium tuberculosis (MTB) DNA in tongue swabs. We hypothesized that the two nonsputum samples would deliver complementary, not redundant, results. The study included 131 South African patients of whom 64 (48.1%) were confirmed to have TB by GeneXpert MTB/RIF Ultra (Xpert Ultra) or culture analysis of sputum. A total of 120 patients (91.6%) were coinfected with HIV and 130 yielded a valid urine LAM result (Alere DETERMINE LAM Ag). Tongue swab samples were tested by IS6110-targeted qPCR with a quantification cycle (Cq) cutoff of 32. Relative to reference sputum testing (TB culture and Xpert Ultra), combined urine LAM and oral swab testing (either sample positive) was significantly more sensitive than either nonsputum sample alone (57% sensitivity for combined testing versus 35% and 39% sensitivity for urine LAM and tongue swabs; P = 0.01 and 0.04, respectively). Specificity of combined testing (neither sample positive) was 97%. On average, tongue swab-positive participants had higher sputum signal strength than urine-LAM positive participants, as measured by sputum Xpert Ultra Cq value (P = 0.037). A subset of tongue swabs (N = 18) was also tested by using Xpert Ultra, which reproduced true positive and true negative IS6110 qPCR results and resolved the two false-positive tongue swabs. With further development, tongue swabs and urine may feasibly serve as complementary nonsputum samples for diagnosis of TB in PWH.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose , Técnicas e Procedimentos Diagnósticos , Infecções por HIV/complicações , Humanos , Lipopolissacarídeos/urina , Mycobacterium tuberculosis/genética , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose/diagnóstico , Tuberculose/urina
5.
Antimicrob Agents Chemother ; 66(7): e0001722, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35703552

RESUMO

A phenotypic screen of the ReFRAME compound library was performed to identify cell-active inhibitors that could be developed as therapeutics for giardiasis. A primary screen against Giardia lamblia GS clone H7 identified 85 cell-active compounds at a hit rate of 0.72%. A cytotoxicity counterscreen against HEK293T cells was carried out to assess hit compound selectivity for further prioritization. Mavelertinib (PF-06747775), a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), was identified as a potential new therapeutic based on indication, activity, and availability after reconfirmation. Mavelertinib has in vitro efficacy against metronidazole-resistant 713-M3 strains. Other EGFR-TKIs screened in follow-up assays exhibited insignificant inhibition of G. lamblia at 5 µM, suggesting that the primary molecular target of mavelertinib may have a different mechanistic binding mode from human EGFR-tyrosine kinase. Mavelertinib, dosed as low as 5 mg/kg of body weight or as high as 50 mg/kg, was efficacious in the acute murine Giardia infection model. These results suggest that mavelertinib merits consideration for repurposing and advancement to giardiasis clinical trials while its analogues are further developed.


Assuntos
Giardia lamblia , Giardíase , Animais , Receptores ErbB , Giardíase/tratamento farmacológico , Células HEK293 , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Int J Parasitol Drugs Drug Resist ; 17: 176-185, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655903

RESUMO

The Neospora caninum Calcium-dependent protein kinase 1 (NcCDPK1) inhibitor BKI-1294 had demonstrated excellent efficacy in a pregnant mouse model of neosporosis, and was also highly efficacious in a pregnant sheep model of toxoplasmosis. In this work, we present the efficacy of BKI-1294 treatment (dosed 5 times orally every 48 h) starting 48 h after intravenous infection of sheep with 105 Nc-Spain7 tachyzoites at mid-pregnancy. In the dams, BKI-1294 plasma concentrations were above the IC50 for N. caninum for 12-15 days. In treated sheep, when they were compared to untreated ones, we observed a minor increase in rectal temperature, higher IFNγ levels after blood stimulation in vitro, and a minor increase of IgG levels against N. caninum soluble antigens through day 28 post-infection. Additionally, the anti-NcSAG1 and anti-NcSAG4 IgGs were lower in treated dams on days 21 and 42 post-infection. However, BKI-1294 did not protect against abortion (87% foetal mortality in both infected groups, treated and untreated) and did not reduce transplacental transmission, parasite load or lesions in placentomes and foetal brain. The lack of foetal protection was likely caused by short systemic exposure in the dams and suboptimal foetal exposure to this parasitostatic drug, which was unable to reduce replication of the likely established N. caninum tachyzoites in the foetus at the moment of treatment. New BKIs with a very low plasma clearance and good ability to cross the blood-brain and placental barriers need to be developed.


Assuntos
Coccidiose , Neospora , Toxoplasmose , Animais , Coccidiose/tratamento farmacológico , Coccidiose/prevenção & controle , Coccidiose/veterinária , Feminino , Feto , Camundongos , Placenta , Gravidez , Ovinos
7.
Artigo em Inglês | MEDLINE | ID: mdl-34482255

RESUMO

The apicomplexan parasite Neospora caninum is an important causative agent of congenital neosporosis, resulting in abortion, birth of weak offspring and neuromuscular disorders in cattle, sheep, and many other species. Among several compound classes that are currently being developed, two have been reported to limit the effects of congenital neosporosis: (i) bumped kinase inhibitors (BKIs) target calcium dependent protein kinase 1 (CDPK1), an enzyme that is encoded by an apicoplast-derived gene and found only in apicomplexans and plants. CDPK1 is essential for host cell invasion and egress; (ii) endochin-like quinolones (ELQs) are inhibitors of the cytochrome bc1 complex of the mitochondrial electron transport chain and thus inhibit oxidative phosphorylation. We here report on the in vitro and in vivo activities of BKI-1748, and of ELQ-316 and its respective prodrugs ELQ-334 and ELQ-422, applied either as single-compounds or ELQ-BKI-combinations. In vitro, BKI-1748 and ELQ-316, as well as BKI-1748 and ELQ-334, acted synergistically, while this was not observed for the BKI-1748/ELQ-422 combination treatment. In a N. caninum-infected pregnant BALB/c mouse model, the synergistic effects observed in vitro were not entirely reproduced, but 100% postnatal survival and 100% inhibition of vertical transmission was noted in the group treated with the BKI-1748/ELQ-334 combination. In addition, the combined drug applications resulted in lower neonatal mortality compared to treatments with single drugs.


Assuntos
Coccidiose , Neospora , Parasitos , Quinolonas , Animais , Bovinos , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neospora/genética , Gravidez , Ovinos
8.
Artigo em Inglês | MEDLINE | ID: mdl-34030110

RESUMO

Bumped kinase inhibitors (BKIs) target the apicomplexan calcium-dependent protein kinase 1 (CDPK1). BKI-1748, a 5-aminopyrazole-4-carboxamide compound when added to fibroblast cells concomitantly to the time of infection, inhibited proliferation of apicomplexan parasites at EC50s of 165 nM (Neospora caninum) and 43 nM (Toxoplasma gondii). Immunofluorescence and electron microscopy showed that addition of 2.5 µM BKI-1748 to infected HFF monolayers transformed parasites into multinucleated schizont-like complexes (MNCs) containing newly formed zoites, which were unable to separate and form infective tachyzoites or undergo egress. In zebrafish (Danio rerio) embryo development assays, no embryonic impairment was detected within 96 h at BKI-1748 concentrations up to 10 µM. In pregnant mice, BKI-1748 applied at days 9-13 of pregnancy at a dose of 20 mg/kg/day was safe and no pregnancy interference was observed. The efficacy of BKI-1748 was assessed in standardized pregnant mouse models infected with N. caninum (NcSpain-7) tachyzoites or T. gondii (TgShSp1) oocysts. In both models, treatments resulted in increased pup survival and profound inhibition of vertical transmission. However, in dams and non-pregnant mice, BKI-1748 treatments resulted in significantly decreased cerebral parasite loads only in T. gondii infected mice. In the T. gondii-model, ocular infection was detected in 10 out of 12 adult mice of the control group, but only in 3 out of 12 mice in the BKI-1748-treated group. Thus, TgShSp1 oocyst infection is a suitable model to study both cerebral and ocular infection by T. gondii. BKI-1748 represents an interesting candidate for follow-up studies on neosporosis and toxoplasmosis in larger animal models.


Assuntos
Coccidiose , Neospora , Parasitos , Toxoplasma , Animais , Coccidiose/tratamento farmacológico , Feminino , Camundongos , Oocistos , Gravidez , Peixe-Zebra
9.
ACS Infect Dis ; 7(5): 1275-1282, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33740373

RESUMO

New drugs are critically needed to treat Cryptosporidium infections, particularly for malnourished children under 2 years old in the developing world and persons with immunodeficiencies. Bioactive compounds from the Tres-Cantos GSK library that have activity against other pathogens were screened for possible repurposing against Cryptosporidium parvum growth. Nineteen compounds grouped into nine structural clusters were identified using an iterative process to remove excessively toxic compounds and screen related compounds from the Tres-Cantos GSK library. Representatives of four different clusters were advanced to a mouse model of C. parvum infection, but only one compound, an imidazole-pyrimidine, led to significant clearance of infection. This imidazole-pyrimidine compound had a number of favorable safety and pharmacokinetic properties and was maximally active in the mouse model down to 30 mg/kg given daily. Though the mechanism of action against C. parvum was not definitively established, this imidazole-pyrimidine compound inhibits the known C. parvum drug target, calcium-dependent protein kinase 1, with a 50% inhibitory concentration of 2 nM. This compound, and related imidazole-pyrimidine molecules, should be further examined as potential leads for Cryptosporidium therapeutics.


Assuntos
Doenças Transmissíveis , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Criptosporidiose/tratamento farmacológico , Reposicionamento de Medicamentos , Humanos , Lactente
10.
ACS Infect Dis ; 7(5): 1200-1207, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33565854

RESUMO

Bumped kinase inhibitors (BKIs) that target Cryptosporidium parvum calcium-dependent protein kinase 1 have been well established as potential drug candidates against cryptosporidiosis. Recently, BKI-1649, with a 7H-pyrrolo[2,3-d]pyrimidin-4-amine, or "pyrrolopyrimidine", central scaffold, has shown improved efficacy in mouse models of Cryptosporidium at substantially reduced doses compared to previously explored analogs of the pyrazolopyrimidine scaffold. Here, two pyrrolopyrimidines with varied substituent groups, BKI-1812 and BKI-1814, were explored in several in vitro and in vivo models and show improvements in potency over the previously utilized pyrazolopyrimidine bumped kinase inhibitors while maintaining equivalent results in other key properties, such as toxicity and efficacy, with their pyrazolopyrimidine isosteric counterparts.


Assuntos
Antiprotozoários , Criptosporidiose , Cryptosporidium , Animais , Criptosporidiose/tratamento farmacológico , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas , Pirróis
11.
Vet Parasitol ; 289: 109336, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33418437

RESUMO

This is a review of the development of bumped-kinase inhibitors (BKIs) for the therapy of One Health parasitic apicomplexan diseases. Many apicomplexan infections are shared between humans and livestock, such as cryptosporidiosis and toxoplasmosis, as well as livestock only diseases such as neosporosis. We have demonstrated proof-of-concept for BKI therapy in livestock models of cryptosporidiosis (newborn calves infected with Cryptosporidium parvum), toxoplasmosis (pregnant sheep infected with Toxoplasma gondii), and neosporosis (pregnant sheep infected with Neospora caninum). We discuss the potential uses of BKIs for the treatment of diseases caused by apicomplexan parasites in animals and humans, and the improvements that need to be made to further develop BKIs.


Assuntos
Antiparasitários/farmacologia , Criptosporidiose/tratamento farmacológico , Saúde Única , Piperidinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Animais , Apicomplexa , Humanos
12.
Artigo em Inglês | MEDLINE | ID: mdl-32861205

RESUMO

Bumped kinase inhibitors (BKIs) are a new class of antiprotozoal drugs that target calcium-dependent protein kinase 1 (CDPK1) in various apicomplexan parasites. A multiple dose regimen of BKI 1369 has been shown to be highly effective against Cystoisospora suis (syn. Isospora suis), the causative agent of neonatal porcine coccidiosis. However, multiple dosing may not be widely applicable in the field. The present study aimed to determine the efficacy of reduced treatment frequencies with BKI 1369 against porcine cystoisosporosis in vitro and in vivo. Pre-incubation of sporozoites with BKI 1369 completely failed to inhibit the infection in vitro unless treatment was prolonged post-infection. Notably, a single treatment of infected cell cultures 2 days post-infection (dpi) resulted in a significant reduction of merozoite replication. In an experimental infection model, treatment of suckling piglets experimentally infected with C. suis 2 and 4 dpi with 20 mg BKI 1369/kg body weight completely suppressed oocyst excretion. A single treatment on the day of infection or 2 dpi suppressed oocyst excretion in 50% and 82% of the piglets and reduced the quantitative excretion in those that shed oocysts by 95.2% and 98.4%, respectively. Moreover, a significant increase in body weight gain and reduced number of diarrhea days were observed in BKI 1369 treated piglets compared to the control piglets, irrespective of time points and frequencies of treatment. Given that reduced treatment frequencies with BKI 1369 are comparable in efficacy to repeated applications without any adverse effects, this could be considered as a practical therapeutic alternative against porcine cystoisosporosis.


Assuntos
Coccidiose , Piperidinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Sarcocystidae , Doenças dos Suínos , Animais , Coccidiose/veterinária , Suínos , Doenças dos Suínos/parasitologia
13.
Int J Antimicrob Agents ; 56(3): 106099, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32707170

RESUMO

Bumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice were assessed in pregnant mice. Drugs were emulsified in corn oil and were applied by gavage for 5 days. Five BKIs did not affect pregnancy, five BKIs exhibited ~15-35% neonatal mortality and five compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilised eggs to 0.2-50 µM of BKIs and microscopic monitoring of embryo development in a blinded manner for 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows the calculation of an impact score (Si) indicating at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for nine compounds no clear correlation between Si and pregnancy outcome was observed. However, the three BKIs affecting zebrafish embryos only at high concentrations (≥40 µM) did not impair mouse pregnancy at all, and the three compounds that inhibited zebrafish embryo development already at 0.2 µM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Naftalenos/toxicidade , Neospora/efeitos dos fármacos , Piperidinas/toxicidade , Pirazóis/toxicidade , Pirimidinas/toxicidade , Quinolinas/toxicidade , Toxoplasma/efeitos dos fármacos , Animais , Linhagem Celular , Coccidiose/tratamento farmacológico , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Naftalenos/farmacocinética , Naftalenos/farmacologia , Neospora/crescimento & desenvolvimento , Piperidinas/farmacocinética , Piperidinas/farmacologia , Gravidez , Complicações na Gravidez/induzido quimicamente , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo , Pirazóis/farmacocinética , Pirazóis/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Quinolinas/farmacocinética , Quinolinas/farmacologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Peixe-Zebra/embriologia
14.
Int J Parasitol ; 50(5): 413-422, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32224121

RESUMO

Bumped Kinase Inhibitors, targeting Calcium-dependent Protein Kinase 1 in apicomplexan parasites with a glycine gatekeeper, are promising new therapeutics for apicomplexan diseases. Here we will review advances, as well as challenges and lessons learned regarding efficacy, safety, and pharmacology that have shaped our selection of pre-clinical candidates.


Assuntos
Apicomplexa/efeitos dos fármacos , Coccidiose/tratamento farmacológico , Inibidores de Proteínas Quinases , Animais , Apicomplexa/metabolismo , Criptosporidiose/tratamento farmacológico , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/metabolismo , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo , Toxoplasma/efeitos dos fármacos , Toxoplasma/metabolismo , Toxoplasmose/tratamento farmacológico
15.
J Infect Dis ; 220(7): 1188-1198, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31180118

RESUMO

Recent studies have illustrated the burden Cryptosporidium infection places on the lives of malnourished children and immunocompromised individuals. Treatment options remain limited, and efforts to develop a new therapeutic are currently underway. However, there are unresolved questions about the ideal pharmacokinetic characteristics of new anti-Cryptosporidium therapeutics. Specifically, should drug developers optimize therapeutics and formulations to increase drug exposure in the gastrointestinal lumen, enterocytes, or systemic circulation? Furthermore, how should researchers interpret data suggesting their therapeutic is a drug efflux transporter substrate? In vivo drug transporter-mediated alterations in efficacy are well recognized in multiple disease areas, but the impact of intestinal transporters on therapeutic efficacy against enteric diseases has not been established. Using multiple in vitro models and a mouse model of Cryptosporidium infection, we characterized the effect of P-glycoprotein efflux on bumped kinase inhibitor pharmacokinetics and efficacy. Our results demonstrated P-glycoprotein decreases bumped kinase inhibitor enterocyte exposure, resulting in reduced in vivo efficacy against Cryptosporidium. Furthermore, a hollow fiber model of Cryptosporidium infection replicated the in vivo impact of P-glycoprotein on anti-Cryptosporidium efficacy. In conclusion, when optimizing drug candidates targeting the gastrointestinal epithelium or gastrointestinal epithelial infections, drug developers should consider the adverse impact of active efflux transporters on efficacy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Criptosporidiose/tratamento farmacológico , Cryptosporidium/efeitos dos fármacos , Enteropatias Parasitárias/tratamento farmacológico , Naftalenos/metabolismo , Naftalenos/uso terapêutico , Piperidinas/metabolismo , Piperidinas/uso terapêutico , Pirazóis/metabolismo , Pirazóis/uso terapêutico , Pirimidinas/metabolismo , Pirimidinas/uso terapêutico , Quinolinas/metabolismo , Quinolinas/uso terapêutico , Animais , Transporte Biológico Ativo , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Criptosporidiose/parasitologia , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/parasitologia , Feminino , Absorção Gastrointestinal/efeitos dos fármacos , Humanos , Interferon gama/genética , Camundongos , Camundongos Knockout , Naftalenos/química , Piperidinas/química , Pirazóis/química , Pirimidinas/química , Quinolinas/química , Resultado do Tratamento
16.
Artigo em Inglês | MEDLINE | ID: mdl-31061151

RESUMO

Previous studies on drug efficacy showed low protection against abortion and vertical transmission of Toxoplasma gondii in pregnant sheep. Bumped kinase inhibitors (BKIs), which are ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1), were shown to be highly efficacious against several apicomplexan parasites in vitro and in laboratory animal models. Here, we present the safety and efficacy of BKI-1294 treatment (dosed orally at 100 mg/kg of body weight 5 times every 48 h) initiated 48 h after oral infection of sheep at midpregnancy with 1,000 TgShSp1 oocysts. BKI-1294 demonstrated systemic exposure in pregnant ewes, with maximum plasma concentrations of 2 to 3 µM and trough concentrations of 0.4 µM at 48 h after each dose. Oral administration of BKI-1294 in uninfected sheep at midpregnancy was deemed safe, since there were no changes in behavior, fecal consistency, rectal temperatures, hematological and biochemical parameters, or fetal mortality/morbidity. In ewes infected with a T. gondii oocyst dose lethal for fetuses, BKI-1294 treatment led to a minor rectal temperature increase after infection and a decrease in fetal/lamb mortality of 71%. None of the lambs born alive in the treated group exhibited congenital encephalitis lesions, and vertical transmission was prevented in 53% of them. BKI-1294 treatment during infection led to strong interferon gamma production after cell stimulation in vitro and a low humoral immune response to soluble tachyzoite antigens but high levels of anti-SAG1 antibodies. The results demonstrate a proof of concept for the therapeutic use of BKI-1294 to protect ovine fetuses from T. gondii infection during pregnancy.


Assuntos
Aborto Espontâneo/etiologia , Aborto Espontâneo/prevenção & controle , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Naftalenos/farmacologia , Piperidinas/farmacologia , Substâncias Protetoras/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Toxoplasmose Animal/complicações , Animais , Feminino , Oocistos , Gravidez , Proteínas Quinases/metabolismo , Ovinos , Toxoplasma/patogenicidade
17.
Artigo em Inglês | MEDLINE | ID: mdl-30959327

RESUMO

Cystoisosporosis is a leading diarrheal disease in suckling piglets. With the confirmation of resistance against the only available drug toltrazuril, there is a substantial need for novel therapeutics to combat the infection and its negative effects on animal health. In closely related apicomplexan species, bumped kinase inhibitors (BKIs) targeting calcium-dependent protein kinase 1 (CDPK1) were shown to be effective in inhibiting host-cell invasion and parasite growth. Therefore, the gene coding for Cystoisospora suis CDPK1 (CsCDPK1) was identified and cloned to investigate activity and thermal stabilization of the recombinant CsCDPK1 enzyme by BKI 1369. In this comprehensive study, the efficacy, safety and pharmacokinetics of BKI 1369 in piglets experimentally infected with Cystoisospora suis (toltrazuril-sensitive, Wien-I and toltrazuril-resistant, Holland-I strains) were determined in vivo and in vitro using an established animal infection model and cell culture, respectively. BKI 1369 inhibited merozoite proliferation in intestinal porcine epithelial cells-1 (IPEC-1) by at least 50% at a concentration of 40 nM, and proliferation was almost completely inhibited (>95%) at 200 nM. Nonetheless, exposure of infected cultures to 200 nM BKI 1369 for five days did not induce structural alterations in surviving merozoites as confirmed by transmission electron microscopy. Five-day treatment with BKI 1369 (10 mg/kg BW twice a day) effectively suppressed oocyst excretion and diarrhea and improved body weight gains in treated piglets without obvious side effects for both toltrazuril-sensitive, Wien-I and resistant, Holland-I C. suis strains. The plasma concentration of BKI 1369 in piglets increased to 11.7 µM during treatment, suggesting constant drug accumulation and exposure of parasites to the drug. Therefore, oral applications of BKI 1369 could potentially be a therapeutic alternative against porcine cystoisosporosis. For use in pigs, future studies on BKI 1369 should be directed towards ease of drug handling and minimizing treatment frequencies.


Assuntos
Antiprotozoários/administração & dosagem , Coccidiose/veterinária , Inibidores de Proteínas Quinases/administração & dosagem , Sarcocystidae/efeitos dos fármacos , Doenças dos Suínos/parasitologia , Animais , Antiprotozoários/química , Coccidiose/tratamento farmacológico , Coccidiose/parasitologia , Feminino , Masculino , Inibidores de Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Sarcocystidae/enzimologia , Sarcocystidae/crescimento & desenvolvimento , Suínos , Doenças dos Suínos/tratamento farmacológico
18.
J Med Chem ; 62(6): 3135-3146, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30830766

RESUMO

Cryptosporidium is a leading cause of pediatric diarrhea worldwide. Currently, there is neither a vaccine nor a consistently effective drug available for this disease. Selective 5-aminopyrazole-4-carboxamide-based bumped-kinase inhibitors (BKIs) are effective in both in vitro and in vivo models of Cryptosporidium parvum. Potential cardiotoxicity in some BKIs led to the continued exploration of the 5-aminopyrazole-4-carboxamide scaffold to find safe and effective drug candidates for Cryptosporidium. A series of newly designed BKIs were tested for efficacy against C. parvum using in vitro and in vivo (mouse infection model) assays and safety issues. Compound 6 (BKI 1708) was found to be efficacious at 8 mg/kg dosed once daily (QD) for 5 days with no observable signs of toxicity up to 200 mg/kg dosed QD for 7 days. Compound 15 (BKI 1770) was found to be efficacious at 30 mg/kg dosed twice daily (BID) for 5 days with no observable signs of toxicity up to 300 mg/kg dosed QD for 7 days. Compounds 6 and 15 are promising preclinical leads for cryptosporidiosis therapy with acceptable safety parameters and efficacy in the mouse model of cryptosporidiosis.


Assuntos
Antiprotozoários/uso terapêutico , Ácidos Carboxílicos/química , Criptosporidiose/tratamento farmacológico , Pirazóis/farmacologia , Animais , Antiprotozoários/farmacocinética , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Humanos , Interferon gama/genética , Camundongos , Camundongos Knockout , Pirazóis/química , Pirazóis/farmacocinética
19.
J Infect Dis ; 219(9): 1464-1473, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30423128

RESUMO

Bumped kinase inhibitors (BKIs) have been shown to be potent inhibitors of Toxoplasma gondii calcium-dependent protein kinase 1. Pyrazolopyrimidine and 5-aminopyrazole-4-carboxamide scaffold-based BKIs are effective in acute and chronic experimental models of toxoplasmosis. Through further exploration of these 2 scaffolds and a new pyrrolopyrimidine scaffold, additional compounds have been identified that are extremely effective against acute experimental toxoplasmosis. The in vivo efficacy of these BKIs demonstrates that the cyclopropyloxynaphthyl, cyclopropyloxyquinoline, and 2-ethoxyquinolin-6-yl substituents are associated with efficacy across scaffolds. In addition, a broad range of plasma concentrations after oral dosing resulted from small structural changes to the BKIs. These select BKIs include anti-Toxoplasma compounds that are effective against acute experimental toxoplasmosis and are not toxic in human cell assays, nor to mice when administered for therapy. The BKIs described here are promising late leads for improving anti-Toxoplasma therapy.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Proteínas de Protozoários/antagonistas & inibidores , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Cerebral/tratamento farmacológico , Administração Oral , Animais , Área Sob a Curva , Feminino , Técnicas In Vitro , Camundongos , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/sangue , Pirazóis/farmacologia , Pirimidinas/sangue , Pirimidinas/farmacologia
20.
PLoS Negl Trop Dis ; 12(8): e0006673, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080847

RESUMO

There is need for a more efficient cell-based assay amenable to high-throughput drug screening against Giardia lamblia. Here, we report the development of a screening method utilizing G. lamblia engineered to express red-shifted firefly luciferase. Parasite growth and replication were quantified using D-luciferin as a substrate in a bioluminescent read-out plateform. This assay was validated for reproducibility and reliability against the Medicines for Malaria Venture (MMV) Pathogen Box compounds. For G. lamblia, forty-three compounds showed ≥ 75% inhibition of parasite growth in the initial screen (16 µM), with fifteen showing ≥ 95% inhibition. The Pathogen Box was also screened against Nanoluciferase expressing (Nluc) C. parvum, yielding 85 compounds with ≥ 75% parasite growth inhibition at 10 µM, with six showing ≥ 95% inhibition. A representative set of seven compounds with activity against both parasites were further analyzed to determine the effective concentration that causes 50% growth inhibition (EC50) and cytotoxicity against mammalian HepG2 cells. Four of the seven compounds were previously known to be effective in treating either Giardia or Cryptosporidium. The remaining three shared no obvious chemical similarity with any previously characterized anti-parasite diarrheal drugs and offer new medicinal chemistry opportunities for therapeutic development. These results suggest that the bioluminescent assays are suitable for large-scale screening of chemical libraries against both C. parvum and G. lamblia.


Assuntos
Antiprotozoários/farmacologia , Cryptosporidium parvum/efeitos dos fármacos , Giardia lamblia/efeitos dos fármacos , Antiprotozoários/efeitos adversos , Antiprotozoários/química , Bioensaio , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...