Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38405930

RESUMO

Although distinct thalamic nuclei encode sensory information for almost all sensory modalities, the existence of a thalamic representation of temperature with a role in thermal perception remains unclear. To address this, we performed high-density electrophysiological recordings across the entire forelimb somatosensory thalamus in awake mice, and identified an anterior and a posterior representation of temperature that spans three thalamic nuclei. We found that these parallel representations show fundamental differences in the cellular encoding of temperature which reflects their cortical output targets. While the anterior representation encodes cool only and the posterior both cool and warm; in both representations cool was more densely represented and showed shorter latency, more transient responses as compared to warm. Moreover, thalamic inactivation showed a major role in thermal perception. Our comprehensive dataset identifies the thalamus as a key structure in thermal processing and highlights a novel posterior pathway in the thalamic representation of warm and cool.

2.
Elife ; 122023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994903

RESUMO

Reproducible research and open science practices have the potential to accelerate scientific progress by allowing others to reuse research outputs, and by promoting rigorous research that is more likely to yield trustworthy results. However, these practices are uncommon in many fields, so there is a clear need for training that helps and encourages researchers to integrate reproducible research and open science practices into their daily work. Here, we outline eleven strategies for making training in these practices the norm at research institutions. The strategies, which emerged from a virtual brainstorming event organized in collaboration with the German Reproducibility Network, are concentrated in three areas: (i) adapting research assessment criteria and program requirements; (ii) training; (iii) building communities. We provide a brief overview of each strategy, offer tips for implementation, and provide links to resources. We also highlight the importance of allocating resources and monitoring impact. Our goal is to encourage researchers - in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees - to think creatively about the many ways they can promote reproducible research and open science practices in their institutions.


Assuntos
Mentores , Médicos , Humanos , Reprodutibilidade dos Testes , Seleção de Pessoal , Pesquisadores
3.
Front Neurosci ; 17: 1210949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901427

RESUMO

The thalamus acts as an interface between the periphery and the cortex, with nearly every sensory modality processing information in the thalamocortical circuit. Despite well-established thalamic nuclei for visual, auditory, and tactile modalities, the key thalamic nuclei responsible for innocuous thermosensation remains under debate. Thermosensory information is first transduced by thermoreceptors located in the skin and then processed in the spinal cord. Temperature information is then transmitted to the brain through multiple spinal projection pathways including the spinothalamic tract and the spinoparabrachial tract. While there are fundamental studies of thermal transduction via thermosensitive channels in primary sensory afferents, thermal representation in the spinal projection neurons, and encoding of temperature in the primary cortical targets, comparatively little is known about the intermediate stage of processing in the thalamus. Multiple thalamic nuclei have been implicated in thermal encoding, each with a corresponding cortical target, but without a consensus on the role of each pathway. Here, we review a combination of anatomy, physiology, and behavioral studies across multiple animal models to characterize the thalamic representation of temperature in two proposed thermosensory information streams.

4.
Cereb Cortex ; 33(8): 4870-4885, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36255325

RESUMO

In the thermal system, skin cooling is represented in the primary somatosensory cortex (S1) and the posterior insular cortex (pIC). Whether S1 and pIC are nodes in anatomically separate or overlapping thermal sensorimotor pathways is unclear, as the brain-wide connectivity of the thermal system has not been mapped. We address this using functionally targeted, dual injections of anterograde viruses or retrograde tracers into the forelimb representation of S1 (fS1) and pIC (fpIC). Our data show that inputs to fS1 and fpIC originate from separate neuronal populations, supporting the existence of parallel input pathways. Outputs from fS1 and fpIC are more widespread than their inputs, sharing a number of cortical and subcortical targets. While, axonal projections were separable, they were more overlapping than the clusters of input cells. In both fS1 and fpIC circuits, there was a high degree of reciprocal connectivity with thalamic and cortical regions, but unidirectional output to the midbrain and hindbrain. Notably, fpIC showed connectivity with regions associated with thermal processing. Together, these data indicate that cutaneous thermal information is routed to the cortex via parallel circuits and is forwarded to overlapping downstream regions for the binding of somatosensory percepts and integration with ongoing behavior.


Assuntos
Neurônios , Tálamo , Camundongos , Animais , Vias Neurais/fisiologia , Tálamo/fisiologia , Mapeamento Encefálico , Encéfalo , Córtex Somatossensorial/fisiologia
5.
J Neurophysiol ; 125(6): 2408-2431, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33978507

RESUMO

As the tools to simultaneously record electrophysiological signals from large numbers of neurons within and across brain regions become increasingly available, this opens up for the first time the possibility of establishing the details of causal relationships between monosynaptically connected neurons and the patterns of neural activation that underlie perception and behavior. Although recorded activity across synaptically connected neurons has served as the cornerstone for much of what we know about synaptic transmission and plasticity, this has largely been relegated to ex vivo preparations that enable precise targeting under relatively well-controlled conditions. Analogous studies in vivo, where image-guided targeting is often not yet possible, rely on indirect, data-driven measures, and as a result such studies have been sparse and the dependence upon important experimental parameters has not been well studied. Here, using in vivo extracellular single-unit recordings in the topographically aligned rodent thalamocortical pathway, we sought to establish a general experimental and computational framework for inferring synaptic connectivity. Specifically, attacking this problem within a statistical signal detection framework utilizing experimentally recorded data in the ventral-posterior medial (VPm) region of the thalamus and the homologous region in layer 4 of primary somatosensory cortex (S1) revealed a trade-off between network activity levels needed for the data-driven inference and synchronization of nearby neurons within the population that results in masking of synaptic relationships. Here, we provide a framework for establishing connectivity in multisite, multielectrode recordings based on statistical inference, setting the stage for large-scale assessment of synaptic connectivity within and across brain structures.NEW & NOTEWORTHY Despite the fact that all brain function relies on the long-range transfer of information across different regions, the tools enabling us to measure connectivity across brain structures are lacking. Here, we provide a statistical framework for identifying and assessing potential monosynaptic connectivity across neuronal circuits from population spiking activity that generalizes to large-scale recording technologies that will help us to better understand the signaling within networks that underlies perception and behavior.


Assuntos
Potenciais Evocados/fisiologia , Rede Nervosa/fisiologia , Córtex Somatossensorial/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/fisiologia , Animais , Estimulação Elétrica , Eletrocorticografia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Imagem Óptica , Ratos , Ratos Sprague-Dawley , Vibrissas/fisiologia
6.
J Neurophysiol ; 125(5): 1833-1850, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33760642

RESUMO

Sensory signals from the outside world are transduced at the periphery, passing through thalamus before reaching cortex, ultimately giving rise to the sensory representations that enable us to perceive the world. The thalamocortical circuit is particularly sensitive to the temporal precision of thalamic spiking due to highly convergent synaptic connectivity. Thalamic neurons can exhibit burst and tonic modes of firing that strongly influence timing within the thalamus. The impact of these changes in thalamic state on sensory encoding in the cortex, however, remains unclear. Here, we investigated the role of thalamic state on timing in the thalamocortical circuit of the vibrissa pathway in the anesthetized rat. We optogenetically hyperpolarized thalamus while recording single unit activity in both thalamus and cortex. Tonic spike-triggered analysis revealed temporally precise thalamic spiking that was locked to weak white-noise sensory stimuli, whereas thalamic burst spiking was associated with a loss in stimulus-locked temporal precision. These thalamic state-dependent changes propagated to cortex such that the cortical timing precision was diminished during the hyperpolarized (burst biased) thalamic state. Although still sensory driven, the cortical neurons became significantly less precisely locked to the weak white-noise stimulus. The results here suggests a state-dependent differential regulation of spike timing precision in the thalamus that could gate what signals are ultimately propagated to cortex.NEW & NOTEWORTHY The majority of sensory signals are transmitted through the thalamus. There is growing evidence of complex thalamic gating through coordinated firing modes that have a strong impact on cortical sensory representations. Optogenetic hyperpolarization of thalamus pushed it into burst firing that disrupted precise time-locked sensory signaling, with a direct impact on the downstream cortical encoding, setting the stage for a timing-based thalamic gate of sensory signaling.


Assuntos
Potenciais de Ação/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Vibrissas/fisiologia , Animais , Eletrocorticografia , Feminino , Vias Neurais/fisiologia , Optogenética , Estimulação Física , Ratos , Ratos Sprague-Dawley
7.
J Neurosci ; 38(21): 4870-4885, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29703788

RESUMO

Little is known about whether information transfer at primary sensory thalamic nuclei is modified by behavioral context. Here we studied the influence of previous decisions/rewards on current choices and preceding spike responses of ventroposterior medial thalamus (VPm; the primary sensory thalamus in the rat whisker-related tactile system). We trained head-fixed rats to detect a ramp-like deflection of one whisker interspersed within ongoing white noise stimulation. Using generative modeling of behavior, we identify two task-related variables that are predictive of actual decisions. The first reflects task engagement on a local scale ("trial history": defined as the decisions and outcomes of a small number of past trials), whereas the other captures behavioral dynamics on a global scale ("satiation": slow dynamics of the response pattern along an entire session). Although satiation brought about a slow drift from Go to NoGo decisions during the session, trial history was related to local (trial-by-trial) patterning of Go and NoGo decisions. A second model that related the same predictors first to VPm spike responses, and from there to decisions, indicated that spiking, in contrast to behavior, is sensitive to trial history but relatively insensitive to satiation. Trial history influences VPm spike rates and regularity such that a history of Go decisions would predict fewer noise-driven spikes (but more regular ones), and more ramp-driven spikes. Neuronal activity in VPm, thus, is sensitive to local behavioral history, and may play an important role in higher-order cognitive signaling.SIGNIFICANCE STATEMENT It is an important question for perceptual and brain functions to find out whether cognitive signals modulate the sensory signal stream and if so, where in the brain this happens. This study provides evidence that decision and reward history can already be reflected in the ascending sensory pathway, on the level of first-order sensory thalamus. Cognitive signals are relayed very selectively such that only local trial history (spanning a few trials) but not global history (spanning an entire session) are reflected.


Assuntos
Cognição/fisiologia , Detecção de Sinal Psicológico/fisiologia , Tálamo/fisiologia , Tato/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos/fisiologia , Mapeamento Encefálico , Tomada de Decisões/fisiologia , Feminino , Modelos Lineares , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/fisiologia , Vibrissas/inervação , Vibrissas/fisiologia
8.
J Neurophysiol ; 117(1): 163-177, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27760816

RESUMO

Sensory stimulation drives complex interactions across neural circuits as information is encoded and then transmitted from one brain region to the next. In the highly interconnected thalamocortical circuit, these complex interactions elicit repeatable neural dynamics in response to temporal patterns of stimuli that provide insight into the circuit properties that generated them. Here, using a combination of in vivo voltage-sensitive dye (VSD) imaging of cortex, single-unit recording in thalamus, and optogenetics to manipulate thalamic state in the rodent vibrissa pathway, we probed the thalamocortical circuit with simple temporal patterns of stimuli delivered either to the whiskers on the face (sensory stimulation) or to the thalamus directly via electrical or optogenetic inputs (artificial stimulation). VSD imaging of cortex in response to whisker stimulation revealed classical suppressive dynamics, while artificial stimulation of thalamus produced an additional facilitation dynamic in cortex not observed with sensory stimulation. Thalamic neurons showed enhanced bursting activity in response to artificial stimulation, suggesting that bursting dynamics may underlie the facilitation mechanism we observed in cortex. To test this experimentally, we directly depolarized the thalamus, using optogenetic modulation of the firing activity to shift from a burst to a tonic mode. In the optogenetically depolarized thalamic state, the cortical facilitation dynamic was completely abolished. Together, the results obtained here from simple probes suggest that thalamic state, and ultimately thalamic bursting, may play a key role in shaping more complex stimulus-evoked dynamics in the thalamocortical pathway. NEW & NOTEWORTHY: For the first time, we have been able to utilize optogenetic modulation of thalamic firing modes combined with optical imaging of cortex in the rat vibrissa system to directly test the role of thalamic state in shaping cortical response properties.


Assuntos
Potenciais de Ação/fisiologia , Vias Aferentes/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Análise de Variância , Animais , Channelrhodopsins , Estimulação Elétrica , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dinâmica não Linear , Optogenética , Ratos , Ratos Sprague-Dawley , Tálamo/citologia , Transdução Genética , Vibrissas/inervação , Imagens com Corantes Sensíveis à Voltagem , Proteína Vermelha Fluorescente
9.
Neuron ; 92(2): 298-315, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27764664

RESUMO

Adaptation is fundamental to life. All organisms adapt over timescales that span from evolution to generations and lifetimes to moment-by-moment interactions. The nervous system is particularly adept at rapidly adapting to change, and this in fact may be one of its fundamental principles of organization and function. Rapid forms of sensory adaptation have been well documented across all sensory modalities in a wide range of organisms, yet we do not have a comprehensive understanding of the adaptive cellular mechanisms that ultimately give rise to the corresponding percepts, due in part to the complexity of the circuitry. In this Perspective, we aim to build links between adaptation at multiple scales of neural circuitry by investigating the differential adaptation across brain regions and sub-regions and across specific cell types, for which the explosion of modern tools has just begun to enable. This investigation points to a set of challenges for the field to link functional observations to adaptive properties of the neural circuit that ultimately underlie percepts.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiologia , Neurônios/fisiologia , Percepção/fisiologia , Sensação/fisiologia , Humanos , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Visão Ocular/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia
10.
Gait Posture ; 48: 77-82, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27477713

RESUMO

The ability to perceive the direction of whole-body motion during standing may be critical to maintaining balance and preventing a fall. Our first goal was to quantify kinesthetic perception of whole-body motion by estimating directional acuity thresholds of support-surface perturbations during standing. The directional acuity threshold to lateral deviations in backward support-surface motion in healthy, young adults was quantified as 9.5±2.4° using the psychometric method (n=25 subjects). However, inherent limitations in the psychometric method, such as a large number of required trials and the predetermined stimulus set, may preclude wider use of this method in clinical populations. Our second goal was to validate an adaptive algorithm known as parameter estimation by sequential testing (PEST) as an alternative threshold estimation technique to minimize the required trial count without predetermined knowledge of the relevant stimulus space. The directional acuity threshold was estimated at 11.7±3.8° from the PEST method (n=11 of 25 subjects, psychometric threshold=10.1±3.1°) using only one-third the number of trials compared to the psychometric method. Furthermore, PEST estimates of the direction acuity threshold were highly correlated with the psychometric estimates across subjects (r=0.93) suggesting that both methods provide comparable estimates of the perceptual threshold. Computational modeling of both techniques revealed similar variance in the estimated thresholds across simulations of about 1°. Our results suggest that the PEST algorithm can be used to more quickly quantify whole-body directional acuity during standing in individuals with balance impairments.


Assuntos
Percepção/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Limiar Sensorial/fisiologia , Adulto Jovem
11.
Cell Rep ; 14(4): 795-807, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26776512

RESUMO

It has been posited that the regulation of burst/tonic firing in the thalamus could function as a mechanism for controlling not only how much but what kind of information is conveyed to downstream cortical targets. Yet how this gating mechanism is adaptively modulated on fast timescales by ongoing sensory inputs in rich sensory environments remains unknown. Using single-unit recordings in the rat vibrissa thalamus (VPm), we found that the degree of bottom-up adaptation modulated thalamic burst/tonic firing as well as the synchronization of bursting across the thalamic population along a continuum for which the extremes facilitate detection or discrimination of sensory inputs. Optogenetic control of baseline membrane potential in thalamus further suggests that this regulation may result from an interplay between adaptive changes in thalamic membrane potential and synaptic drive from inputs to thalamus, setting the stage for an intricate control strategy upon which cortical computation is built.


Assuntos
Adaptação Fisiológica , Potenciais Somatossensoriais Evocados , Tálamo/fisiologia , Animais , Feminino , Potenciais da Membrana , Modelos Neurológicos , Neurônios/fisiologia , Optogenética , Ratos , Ratos Sprague-Dawley , Tálamo/citologia , Vibrissas/inervação
12.
Artigo em Inglês | MEDLINE | ID: mdl-26528148

RESUMO

Rodents use active whisker movements to explore their environment. The "slip hypothesis" of whisker-related tactile perception entails that short-lived kinematic events (abrupt whisker movements, called "slips", due to bioelastic whisker properties that occur during active touch of textures) carry the decisive texture information. Supporting this hypothesis, previous studies have shown that slip amplitude and frequency occur in a texture-dependent way. Further, experiments employing passive pulsatile whisker deflections revealed that perceptual performance based on pulse kinematics (i.e., signatures that resemble slips) is far superior to the one based on time-integrated variables like frequency and intensity. So far, pulsatile stimuli were employed in a noise free environment. However, the realistic scenario involves background noise (e.g., evoked by rubbing across the texture). Therefore, if slips are used for tactile perception, the tactile neuronal system would need to differentiate slip-evoked spikes from those evoked by noise. To test the animals under these more realistic conditions, we presented passive whisker-deflections to head-fixed trained rats, consisting of "slip-like" events (waveforms mimicking slips occurring with touch of real textures) embedded into background noise. Varying the (i) shapes (ramp or pulse); (ii) kinematics (amplitude, velocity, etc.); and (iii) the probabilities of occurrence of slip-like events, we observed that rats could readily detect slip-like events of different shapes against noisy background. Psychophysical curves revealed that the difference of slip event and noise amplitude determined perception, while increased probability of occurrence (frequency) had barely any effect. These results strongly support the notion that encoding of kinematics dominantly determines whisker-related tactile perception while the computation of frequency or intensity plays a minor role.

13.
J Neurosci ; 35(47): 15702-15, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26609162

RESUMO

Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery of circuit function and for engineered approaches to alleviate various disorders of the nervous system. However, evidence suggests that neural activity generated by artificial stimuli differs dramatically from normal circuit function, in terms of both the local neuronal population activity at the site of activation and the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. Here, we used voltage-sensitive dye imaging of primary somatosensory cortex in the anesthetized rat in response to deflections of the facial vibrissae and electrical or optogenetic stimulation of thalamic neurons that project directly to the somatosensory cortex. Although the different inputs produced responses that were similar in terms of the average cortical activation, the variability of the cortical response was strikingly different for artificial versus sensory inputs. Furthermore, electrical microstimulation resulted in highly unnatural spatial activation of cortex, whereas optical input resulted in spatial cortical activation that was similar to that induced by sensory inputs. A thalamocortical network model suggested that observed differences could be explained by differences in the way in which artificial and natural inputs modulate the magnitude and synchrony of population activity. Finally, the variability structure in the response for each case strongly influenced the optimal inputs for driving the pathway from the perspective of an ideal observer of cortical activation when considered in the context of information transmission. SIGNIFICANCE STATEMENT: Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery and clinical translation. However, neural activity generated by these artificial means differs dramatically from normal circuit function, both locally and in the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. The significance of this work is in quantifying the differences, elucidating likely mechanisms underlying the differences, and determining the implications for information processing.


Assuntos
Rede Nervosa/fisiologia , Redes Neurais de Computação , Optogenética/métodos , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Vibrissas/fisiologia , Animais , Estimulação Elétrica/métodos , Feminino , Ratos , Ratos Sprague-Dawley
14.
Elife ; 4: e07192, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26140329

RESUMO

Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the 'optoclamp', a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner.


Assuntos
Potenciais de Ação , Técnicas Citológicas/métodos , Neurônios/fisiologia , Optogenética/métodos , Retroalimentação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...