Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Pathog ; 16(1): 34, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972996

RESUMO

It has recently been proposed that the study of microbial dynamics in humans may gain insights from island biogeographical theory. Here, we test whether the diversity of the intratumoral microbiota of colorectal cancer tumors (CRC) follows a power law with tumor size akin to the island species-area relationship. We confirm a direct correlation between the quantity of Amplicon Sequence Variants (ASVs) within CRC tumors and tumor sizes, following a (log)power model, explaining 47% of the variation. Understanding the processes involved, potentially through the analogy of tumors and islands, may ultimately contribute to future clinical and therapeutic strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38888215

RESUMO

Since its coinage ca. 1850 AD by Philip Barker Webb, the biogeographical region of Macaronesia, consisting of the North Atlantic volcanic archipelagos of the Azores, Madeira with the tiny Selvagens, the Canaries and Cabo Verde, and for some authors different continental coastal strips, has been under dispute. Herein, after a brief introduction on the terminology and purpose of regionalism, we recover the origins of the Macaronesia name, concept and geographical adscription, as well as its biogeographical implications and how different authors have positioned themselves, using distinct terrestrial or marine floristic and/or faunistic taxa distributions and relationships for accepting or rejecting the existence of this biogeographical region. Four main issues related to Macaronesia are thoroughly discussed: (i) its independence from the Mediterranean phytogeographical region; (ii) discrepancies according to different taxa analysed; (iii) its geographical limits and the role of the continental enclave(s), and, (iv) the validity of the phytogeographical region level. We conclude that Macaronesia has its own identity and a sound phytogeographical foundation, and that this is mainly based on three different floristic components that are shared by the Macaronesian core (Madeira and the Canaries) and the outermost archipelagos (Azores and Cabo Verde). These floristic components are: (i) the Palaeotropical-Tethyan Geoflora, formerly much more widely distributed in Europe and North Africa and currently restricted to the three northern archipelagos (the Azores, Madeira and the Canaries); (ii) the African Rand Flora, still extant in the coastal margins of Africa and Arabia, and present in the southern archipelagos (Madeira, the Canaries and Cabo Verde), and (iii) the Macaronesian neoendemic floristic component, represented in all the archipelagos, a result of allopatric diversification promoted by isolation of Mediterranean ancestors that manage to colonize Central Macaronesia and, from there, the outer archipelagos. Finally, a differentiating floristic component recently colonized the different archipelagos from the nearest continental coast, providing them with different biogeographic flavours.

3.
Ecol Lett ; 26(6): 965-982, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988091

RESUMO

Research on island species-area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity-area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have 're-calibrated' the IDARs such that they resemble the historic period prior to recent extinctions.


Assuntos
Biodiversidade , Aves , Animais , Filogenia , Ilhas , Ecossistema
4.
Nat Commun ; 14(1): 1019, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823195

RESUMO

Insular communities are particularly vulnerable to anthropogenic extinctions and introductions. Changes in composition of island frugivore communities may affect seed dispersal within the native plant community, risking ecological shifts and ultimately co-extinction cascades. Introduced species could potentially mitigate these risks by replacing ecological functions of extinct species, but conclusive evidence is lacking. Here, we investigate changes in plant-frugivore interactions involving frugivorous birds, mammals and reptiles in Mauritius, an oceanic island with an exceptionally well-specified frugivore community and well-described species introduction history. We demonstrate substantial losses of binary interaction partnerships (at the species level) resulting from native species extinctions, but also gains of equal numbers of novel interactions with introduced species, potentially supporting the idea that non-native species might compensate for lost seed dispersal. However, closer investigation of animal seed handling behaviour reveals that most interactions with seed dispersers are replaced by ecologically different interactions with seed predators. Therefore, restoration of seed dispersal functionality in this novel plant-frugivore community is unlikely.


Assuntos
Frutas , Dispersão de Sementes , Animais , Maurício , Sementes , Herbivoria , Mamíferos , Espécies Introduzidas , Ecossistema
5.
Ecol Evol ; 12(7): e9024, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35822114

RESUMO

Varied strategies to alleviate the loss of farmland biodiversity have been tested, yet there is still insufficient evidence supporting their effectiveness, especially when considering phylogenetic and functional diversity alongside traditional taxonomic diversity metrics. This conservation challenge is accentuated in the Afrotropics by the rapid agricultural expansion and intensification for the production of cash crops and by a comparative lack of research. In this study, we assessed how farming practices influence avian phylogenetic and functional diversity. We conducted point-count surveys to assess avian diversity in monocultures of tea and mixed crop farming systems surrounding the Nyungwe rainforest in south-west Rwanda, allowing us to investigate the drivers of avian diversity at farm level. Species composition was found to be moderately different between farm types, with mixed crop farms supporting higher phylogenetic diversity than tea plantations. There were no significant seasonal differences in species composition, functional or phylogenetic diversity. Overall, functional diversity did not differ between farm types, but the dispersion of trophic-related traits was significantly higher in mixed crop farms. Both functional and phylogenetic diversity were influenced by floristic diversity, vegetation height, tree number, and elevation to varying degrees. Our results also (i) highlight the role of farmland heterogeneity (e.g., crop species composition, height, and tree cover extent) in encouraging avian functional and phylogenetic diversity in the Afrotropics and (ii) indicate that the generally negative biodiversity impacts of monoculture agriculture can be partially alleviated by extensive agroforestry with an emphasis on indigenous tree species.

6.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580208

RESUMO

The extinction of iconic species such as the dodo and the deforestation of Easter Island are emblematic of the transformative impact of human colonization of many oceanic islands, especially those in the tropics and subtropics. Yet, the interaction of prehistoric and colonial-era colonists with the forests and forest resources they encountered can be complex, varies between islands, and remains poorly understood. Long-term ecological records (e.g., fossil pollen) provide the means to understand these human impacts in relation to natural change and variability pre- and postcolonization. Here we analyze paleoecological archives in forested landscapes of the Canary Islands and Cabo Verde, first colonized approximately 2,400 to 2,000 and 490 y ago, respectively. We demonstrate sensitivity to regional climate change prior to human colonization, followed by divergent but gradual impacts of early human settlement. These contrast with more rapid transformation in the colonial era, associated with significant increases in anthropogenic pressures. In the Canary Islands, at least two native tree taxa became extinct and lowland thermophilous woodlands were largely converted to agricultural land, yet relictual subtropical laurel forests persisted with limited incursion of nonnative species. In Cabo Verde, in contrast, thermophilous woodlands were depleted and substituted by open landscapes and introduced woodlands. Differences between these two archipelagos reflect the changing cultural practices and societal interactions with forests and illustrate the importance of long-term data series in understanding the human footprint on island ecosystems, information that will be critically important for current and future forest restoration and conservation management practices in these two biodiversity hotspots.


Assuntos
Efeitos Antropogênicos , Florestas , Mudança Climática , Paleontologia , Polinésia , Espanha
7.
Commun Biol ; 4(1): 1128, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561537

RESUMO

Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification.


Assuntos
Biodiversidade , Micorrizas/fisiologia , Dispersão Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Simbiose
8.
Science ; 372(6541): 488-491, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926949

RESUMO

Islands are among the last regions on Earth settled and transformed by human activities, and they provide replicated model systems for analysis of how people affect ecological functions. By analyzing 27 representative fossil pollen sequences encompassing the past 5000 years from islands globally, we quantified the rates of vegetation compositional change before and after human arrival. After human arrival, rates of turnover accelerate by a median factor of 11, with faster rates on islands colonized in the past 1500 years than for those colonized earlier. This global anthropogenic acceleration in turnover suggests that islands are on trajectories of continuing change. Strategies for biodiversity conservation and ecosystem restoration must acknowledge the long duration of human impacts and the degree to which ecological changes today differ from prehuman dynamics.


Assuntos
Biodiversidade , Atividades Humanas , Ilhas , Humanos , Pólen
9.
Science ; 365(6458): 1108-1113, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31515383

RESUMO

Mountains contribute disproportionately to the terrestrial biodiversity of Earth, especially in the tropics, where they host hotspots of extraordinary and puzzling richness. With about 25% of all land area, mountain regions are home to more than 85% of the world's species of amphibians, birds, and mammals, many entirely restricted to mountains. Biodiversity varies markedly among these regions. Together with the extreme species richness of some tropical mountains, this variation has proven challenging to explain under traditional climatic hypotheses. However, the complex climatic characteristics of rugged mountain regions differ fundamentally from those of lowland regions, likely playing a key role in generating and maintaining diversity. With ongoing global changes in climate and land use, the role of mountains as refugia for biodiversity may well come under threat.


Assuntos
Altitude , Biodiversidade , Ecossistema , Anfíbios , Animais , Aves , Conservação dos Recursos Naturais , Insetos , Mamíferos , Plantas , Clima Tropical
10.
Science ; 365(6458): 1114-1119, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31515384

RESUMO

Mountain regions are unusually biodiverse, with rich aggregations of small-ranged species that form centers of endemism. Mountains play an array of roles for Earth's biodiversity and affect neighboring lowlands through biotic interchange, changes in regional climate, and nutrient runoff. The high biodiversity of certain mountains reflects the interplay of multiple evolutionary mechanisms: enhanced speciation rates with distinct opportunities for coexistence and persistence of lineages, shaped by long-term climatic changes interacting with topographically dynamic landscapes. High diversity in most tropical mountains is tightly linked to bedrock geology-notably, areas comprising mafic and ultramafic lithologies, rock types rich in magnesium and poor in phosphate that present special requirements for plant physiology. Mountain biodiversity bears the signature of deep-time evolutionary and ecological processes, a history well worth preserving.


Assuntos
Altitude , Biodiversidade , Evolução Biológica , Ecossistema , Geologia , Clima
11.
Proc Natl Acad Sci U S A ; 116(25): 12337-12342, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31147465

RESUMO

The increase in species richness with island area (ISAR) is a well-established global pattern, commonly described by the power model, the parameters of which are hypothesized to vary with system isolation and to be indicative of ecological process regimes. We tested a structural equation model of ISAR parameter variation as a function of taxon, isolation, and archipelago configuration, using a globally distributed dataset of 151 ISARs encompassing a range of taxa and archipelago types. The resulting models revealed a negative relationship between ISAR intercept and slope as a function of archipelago species richness, in turn shaped by taxon differences and by the amount and disposition of archipelago area. These results suggest that local-scale (intra-archipelago) processes have a substantial role in determining ISAR form, obscuring the diversity patterns predicted by island theory as a function of archipelago isolation. These findings have implications for the use and interpretation of ISARs as a tool within biogeography, ecology, and conservation.


Assuntos
Biodiversidade , Ilhas , Animais , Geografia , Modelos Teóricos
12.
Science ; 357(6354)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860356

RESUMO

Islands provide classic model biological systems. We review how growing appreciation of geoenvironmental dynamics of marine islands has led to advances in island biogeographic theory accommodating both evolutionary and ecological phenomena. Recognition of distinct island geodynamics permits general models to be developed and modified to account for patterns of diversity, diversification, lineage development, and trait evolution within and across island archipelagos. Emergent patterns of diversity include predictable variation in island species-area relationships, progression rule colonization from older to younger land masses, and syndromes including loss of dispersability and secondary woodiness in herbaceous plant lineages. Further developments in Earth system science, molecular biology, and trait data for islands hold continued promise for unlocking many of the unresolved questions in evolutionary biology and biogeography.


Assuntos
Biodiversidade , Ilhas , Florestas , Oceanos e Mares , Filogeografia
13.
Nat Ecol Evol ; 1(7): 181, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28812590

RESUMO

The discovery and colonization of islands by humans has invariably resulted in their widespread ecological transformation. The small and isolated populations of many island taxa, and their evolution in the absence of humans and their introduced taxa, mean that they are particularly vulnerable to human activities. Consequently, even the most degraded islands are a focus for restoration, eradication, and monitoring programmes to protect the remaining endemic and/or relict populations. Here, we build a framework that incorporates an assessment of the degree of change from multiple baseline reference periods using long-term ecological data. The use of multiple reference points may provide information on both the variability of natural systems and responses to successive waves of cultural transformation of island ecosystems, involving, for example, the alteration of fire and grazing regimes and the introduction of non-native species. We provide exemplification of how such approaches can provide valuable information for biodiversity conservation managers of island ecosystems.

14.
Sci Rep ; 7(1): 3899, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634340

RESUMO

Species abundance distributions (SAD) are central to the description of diversity and have played a major role in the development of theories of biodiversity and biogeography. However, most work on species abundance distributions has focused on one single spatial scale. Here we used data on arthropods to test predictions obtained with computer simulations on whether dispersal ability influences the rate of change of SADs as a function of sample size. To characterize the change of the shape of the SADs we use the moments of the distributions: the skewness and the raw moments. In agreement with computer simulations, low dispersal ability species generate a hump for intermediate abundance classes earlier than the distributions of high dispersal ability species. Importantly, when plotted as function of sample size, the raw moments of the SADs of arthropods have a power law pattern similar to that observed for the SAD of tropical tree species, thus we conjecture that this might be a general pattern in ecology. The existence of this pattern allows us to extrapolate the moments and thus reconstruct the SAD for larger sample sizes using a procedure borrowed from the field of image analysis based on scaled discrete Tchebichef moments and polynomials.


Assuntos
Artrópodes , Biodiversidade , Ecossistema , Densidade Demográfica , Algoritmos , Animais , Modelos Teóricos
15.
Biol Rev Camb Philos Soc ; 92(2): 830-853, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923215

RESUMO

The general dynamic model of oceanic island biogeography (GDM) has added a new dimension to theoretical island biogeography in recognizing that geological processes are key drivers of the evolutionary processes of diversification and extinction within remote islands. It provides a dynamic and essentially non-equilibrium framework generating novel predictions for emergent diversity properties of oceanic islands and archipelagos. Its publication in 2008 coincided with, and spurred on, renewed attention to the dynamics of remote islands. We review progress, both in testing the GDM's predictions and in developing and enhancing ecological-evolutionary understanding of oceanic island systems through the lens of the GDM. In particular, we focus on four main themes: (i) macroecological tests using a space-for-time rationale; (ii) extensions of theory to islands following different patterns of ontogeny; (iii) the implications of GDM dynamics for lineage diversification and trait evolution; and (iv) the potential for downscaling GDM dynamics to local-scale ecological patterns and processes within islands. We also consider the implications of the GDM for understanding patterns of non-native species diversity. We demonstrate the vitality of the field of island biogeography by identifying a range of potentially productive lines for future research.


Assuntos
Biodiversidade , Ilhas , Modelos Biológicos , Ecologia , Fenômenos Geológicos , Oceanos e Mares , Filogenia
16.
Biodivers Data J ; (4): e10948, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28174509

RESUMO

BACKGROUND: In this contribution we present detailed distribution and abundance data for arthropod species identified during the BALA - Biodiversity of Arthropods from the Laurisilva of the Azores (1999-2004) and BALA2 projects (2010-2011) from 18 native forest fragments in seven of the nine Azorean islands (all excluding Graciosa and Corvo islands, which have no native forest left). NEW INFORMATION: Of the total 286 species identified, 81% were captured between 1999 and 2000, a period during which only 39% of all the samples were collected. On average, arthropod richness for each island increased by 10% during the time frame of these projects. The classes Arachnida, Chilopoda and Diplopoda represent the most remarkable cases of new island records, with more than 30% of the records being novelties. This study stresses the need to expand the approaches applied in these projects to other habitats in the Azores, and more importantly to other less surveyed taxonomic groups (e.g. Diptera and Hymenoptera). These steps are fundamental for getting a more accurate assessment of biodiversity in the archipelago.

17.
BMC Evol Biol ; 15: 250, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26559388

RESUMO

BACKGROUND: For a remote oceanic archipelago of up to 8 Myr age, the Azores have a comparatively low level of endemism. We present an analysis of phylogeographic patterns of endemic Azorean island arthropods aimed at testing patterns of diversification in relation to the ontogeny of the archipelago, in order to distinguish between alternative models of evolutionary dynamics on islands. We collected individuals of six species (representing Araneae, Hemiptera and Coleoptera) from 16 forest fragments from 7 islands. Using three mtDNA markers, we analysed the distribution of genetic diversity within and between islands, inferred the differentiation time-frames and investigated the inter-island migration routes and colonization patterns. RESULTS: Each species exhibited very low levels of mtDNA divergence, both within and between islands. The two oldest islands were not strongly involved in the diffusion of genetic diversity within the archipelago. The most haplotype-rich islands varied according to species but the younger, central islands contributed the most to haplotype diversity. Colonization events both in concordance with and in contradiction to an inter-island progression rule were inferred, while a non-intuitive pattern of colonization from western to eastern islands was also inferred. CONCLUSIONS: The geological development of the Azores has followed a less tidy progression compared to classic hotspot archipelagos, and this is reflected in our findings. The study species appear to have been differentiating within the Azores for <2 Myr, a fraction of the apparent life span of the archipelago, which may indicate that extinction events linked to active volcanism have played an important role. Assuming that after each extinction event, colonization was initiated from a nearby island hosting derived haplotypes, the apparent age of species diversification in the archipelago would be moved closer to the present after each extinction-recolonization cycle. Exploiting these ideas, we propose a general model for future testing.


Assuntos
Artrópodes/classificação , Artrópodes/genética , Filogeografia , Animais , Açores , Evolução Biológica , DNA Mitocondrial/genética , Variação Genética , Haplótipos , Oceanos e Mares , Filogenia
18.
Biol Lett ; 11(6): 20150273, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26063753

RESUMO

Oceanic islands host a disproportionately high fraction of endangered or recently extinct endemic species. We report on species extinctions among endemic Azorean beetles following 97% habitat loss since AD 1440. We infer extinctions from historical and contemporary records and examine the influence of three predictors: geographical range, habitat specialization and body size. Of 55 endemic beetle species investigated (out of 63), seven can be considered extinct. Single-island endemics (SIEs) were more prone to extinction than multi-island endemics. Within SIEs restricted to native habitat, larger species were more extinction-prone. We thus show a hierarchical path to extinction in Azorean beetles: species with small geographical range face extinction first, with the larger bodied ones being the most threatened. Our study provides a clear warning of the impact of habitat loss on island endemic biotas.


Assuntos
Besouros/fisiologia , Extinção Biológica , Distribuição Animal , Animais , Açores , Tamanho Corporal , Ecossistema
19.
PLoS One ; 10(5): e0123952, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946032

RESUMO

The conversion of forest to agriculture across the world's tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities.


Assuntos
Biodiversidade , Planejamento Ambiental , Ficus/fisiologia , Florestas , Conservação dos Recursos Naturais
20.
Ambio ; 44(7): 678-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25794815

RESUMO

Many of the world's rural populations are dependent on the local provision of economically and medicinally important plant resources. However, increasing land-use intensity is depleting these resources, reducing human welfare, and thereby constraining development. Here we investigate a low cost strategy to manage the availability of valuable plant resources, facilitated by the use of isolated Ficus trees as restoration nuclei. We surveyed the plants growing under 207 isolated trees in Assam, India, and categorized them according to their local human-uses. We found that Ficus trees were associated with double the density of important high-grade timber, firewood, human food, livestock fodder, and medicinal plants compared to non-Ficus trees. Management practices were also important in determining the density of valuable plants, with grazing pressure and land-use intensity significantly affecting densities in most categories. Community management practices that conserve isolated Ficus trees, and restrict livestock grazing and high-intensity land-use in their vicinity, can promote plant growth and the provision of important local resources.


Assuntos
Agricultura/métodos , Biodiversidade , Conservação dos Recursos Naturais , Ficus/fisiologia , Árvores/fisiologia , Índia , Plantas Medicinais/crescimento & desenvolvimento , População Rural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...