Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215806

RESUMO

The UK and Europe have seen successive outbreaks of highly pathogenic avian influenza across the 2020/21 and 2021/22 autumn/winter seasons. Understanding both the epidemiology and transmission of these viruses in different species is critical to aid mitigating measures where outbreaks cause extensive mortalities in both land- and waterfowl. Infection of different species can result in mild or asymptomatic outcomes, or acute infections that result in high morbidity and mortality levels. Definition of disease outcome in different species is of great importance to understanding the role different species play in the maintenance and transmission of these pathogens. Further, the infection of species that have conservation value is also important to recognise and characterise to understand the impact on what might be limited wild populations. Highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b has been detected in great skuas (Stercorarius skua) across different colonies on islands off the shore of Scotland, Great Britain during summer 2021. A large number of great skuas were observed as developing severe clinical disease and dying during the epizootic and mortalities were estimated to be high where monitored. Of eight skuas submitted for post-mortem examination, seven were confirmed as being infected with this virus using a range of diagnostic assays. Here we overview the outbreak event that occurred in this species, listed as species of conservation concern in Great Britain and outline the importance of this finding with respect to virus transmission and maintenance.


Assuntos
Charadriiformes/virologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , Animais , Animais Selvagens/virologia , Surtos de Doenças , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/mortalidade , Influenza Aviária/transmissão , Escócia/epidemiologia , Estações do Ano , Virulência
2.
Emerg Infect Dis ; 27(11): 2856-2863, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670647

RESUMO

We report a disease and mortality event involving swans, seals, and a fox at a wildlife rehabilitation center in the United Kingdom during late 2020. Five swans had onset of highly pathogenic avian influenza virus infection while in captivity. Subsequently, 5 seals and a fox died (or were euthanized) after onset of clinical disease. Avian-origin influenza A virus subtype H5N8 was retrospectively determined as the cause of disease. Infection in the seals manifested as seizures, and immunohistochemical and molecular testing on postmortem samples detected a neurologic distribution of viral products. The fox died overnight after sudden onset of inappetence, and postmortem tissues revealed neurologic and respiratory distribution of viral products. Live virus was isolated from the swans, seals, and the fox, and a single genetic change was detected as a potential adaptive mutation in the mammalian-derived viral sequences. No human influenza-like illness was reported in the weeks after the event.


Assuntos
Encefalite , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Focas Verdadeiras , Animais , Centros de Reabilitação , Estudos Retrospectivos
3.
Front Cell Infect Microbiol ; 11: 698909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295840

RESUMO

Phage therapy recently passed a key milestone with success of the first regulated clinical trial using systemic administration. In this single-arm non-comparative safety study, phages were administered intravenously to patients with invasive Staphylococcus aureus infections with no adverse reactions reported. Here, we examined features of 78 lytic S. aureus phages, most of which were propagated using a S. carnosus host modified to be broadly susceptible to staphylococcal phage infection. Use of this host eliminates the threat of contamination with staphylococcal prophage - the main vector of S. aureus horizontal gene transfer. We determined the host range of these phages against an international collection of 185 S. aureus isolates with 56 different multilocus sequence types that included multiple representatives of all epidemic MRSA and MSSA clonal complexes. Forty of our 78 phages were able to infect > 90% of study isolates, 15 were able to infect > 95%, and two could infect all 184 clinical isolates, but not a phage-resistant mutant generated in a previous study. We selected the 10 phages with the widest host range for in vitro characterization by planktonic culture time-kill analysis against four isolates:- modified S. carnosus strain TM300H, methicillin-sensitive isolates D329 and 15981, and MRSA isolate 252. Six of these 10 phages were able to rapidly kill, reducing cell numbers of at least three isolates. The four best-performing phages, in this assay, were further shown to be highly effective in reducing 48 h biofilms on polystyrene formed by eight ST22 and eight ST36 MRSA isolates. Genomes of 22 of the widest host-range phages showed they belonged to the Twortvirinae subfamily of the order Caudovirales in three main groups corresponding to Silviavirus, and two distinct groups of Kayvirus. These genomes assembled as single-linear dsDNAs with an average length of 140 kb and a GC content of c. 30%. Phages that could infect > 96% of S. aureus isolates were found in all three groups, and these have great potential as therapeutic candidates if, in future studies, they can be formulated to maximize their efficacy and eliminate emergence of phage resistance by using appropriate combinations.


Assuntos
Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Bacteriófagos/genética , Genótipo , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética
4.
BMC Genomics ; 22(1): 572, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34311706

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a ubiquitous environmental microorganism and also a common cause of infection. Its ability to survive in many different environments and persistently colonize humans is linked to its presence in biofilms formed on indwelling device surfaces. Biofilm promotes adhesion to, and survival on surfaces, protects from desiccation and the actions of antibiotics and disinfectants. RESULTS: We examined the genetic basis for biofilm production on polystyrene at room (22 °C) and body temperature (37 °C) within 280 P. aeruginosa. 193 isolates (69 %) produced more biofilm at 22 °C than at 37 °C. Using GWAS and pan-GWAS, we found a number of accessory genes significantly associated with greater biofilm production at 22 °C. Many of these are present on a 165 kb region containing genes for heavy metal resistance (arsenic, copper, mercury and cadmium), transcriptional regulators and methytransferases. We also discovered multiple core genome SNPs in the A-type flagellin gene and Type II secretion system gene xpsD. Analysis of biofilm production of isolates of the MDR ST111 and ST235 lineages on stainless-steel revealed several accessory genes associated with enhanced biofilm production. These include a putative translocase with homology to a Helicobacter pylori type IV secretion system protein, a TA system II toxin gene and the alginate biosynthesis gene algA, several transcriptional regulators and methytransferases as well as core SNPs in genes involved in quorum sensing and protein translocation. CONCLUSIONS: Using genetic association approaches we discovered a number of accessory genes and core-genome SNPs that were associated with enhanced early biofilm formation at 22 °C compared to 37 °C. These included a 165 kb genomic island containing multiple heavy metal resistance genes, transcriptional regulators and methyltransferases. We hypothesize that this genomic island may be associated with overall genotypes that are environmentally adapted to survive at lower temperatures. Further work to examine their importance in, for example gene-knockout studies, are required to confirm their relevance. GWAS and pan-GWAS approaches have great potential as a first step in examining the genetic basis of novel bacterial phenotypes.


Assuntos
Biofilmes , Farmacorresistência Bacteriana Múltipla , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Genótipo , Humanos , Infecções por Pseudomonas , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Percepção de Quorum
5.
Vaccine ; 39(29): 3794-3798, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34074548

RESUMO

Since 2003, highly pathogenic avian influenza (HPAI) viruses of the H5 subtype have been maintained in poultry, periodically spilling back into wild migratory birds and spread to other geographic regions, with re-introduction to domestic birds causing severe impacts for poultry health, production and food sustainability. Successive waves of infection have also resulted in substantial genetic evolution and reassortment, enabling the emergence of multiple clades and subtypes within the H5 2.3.4.4 HPAI viruses. Control of AI is principally through either culling or through vaccination using conventional vaccines. Here, we antigenically and genetically characterise the emerging 2020/21 H5NX clade 2.3.4.4 strains and assess cross-reactivity to putative vaccine strains using chicken antisera. We demonstrate significant antigenic differences between commercially available poultry vaccines and currently circulating viruses suggesting that vaccination options might be suboptimal in the current outbreaks.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Vírus da Influenza A/genética , Influenza Aviária/prevenção & controle , Aves Domésticas
6.
BMC Vet Res ; 17(1): 218, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118927

RESUMO

BACKGROUND: Several outbreaks of highly pathogenic avian influenza (HPAI) caused by influenza A virus of subtype H5N8 have been reported in wild birds and poultry in Europe during autumn 2020. Norway is one of the few countries in Europe that had not previously detected HPAI virus, despite widespread active monitoring of both domestic and wild birds since 2005. RESULTS: We report detection of HPAI virus subtype H5N8 in a wild pink-footed goose (Anser brachyrhynchus), and several other geese, ducks and a gull, from south-western Norway in November and December 2020. Despite previous reports of low pathogenic avian influenza (LPAI), this constitutes the first detections of HPAI in Norway. CONCLUSIONS: The mode of introduction is unclear, but a northward migration of infected geese or gulls from Denmark or the Netherlands during the autumn of 2020 is currently our main hypothesis for the introduction of HPAI to Norway. The presence of HPAI in wild birds constitutes a new, and ongoing, threat to the Norwegian poultry industry, and compliance with the improved biosecurity measures on poultry farms should therefore be ensured. [MK1]Finally, although HPAI of subtype H5N8 has been reported to have very low zoonotic potential, this is a reminder that HPAI with greater zoonotic potential in wild birds may pose a threat in the future. [MK1]Updated with a sentence emphasizing the risk HPAI pose to poultry farms, both in the Abstract and in the Conclusion-section in main text, as suggested by Reviewer 1 (#7).


Assuntos
Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Influenza Aviária/epidemiologia , Animais , Animais Selvagens/virologia , Charadriiformes , Patos , Gansos , Influenza Aviária/virologia , Noruega/epidemiologia
7.
Emerg Microbes Infect ; 10(1): 148-151, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33400615

RESUMO

Analyses of HPAI H5 viruses from poultry outbreaks across a wide Eurasian region since July 2020 including the Russian Federation, Republics of Iraq and Kazakhstan, and recent detections in migratory waterfowl in the Netherlands, revealed undetected maintenance of H5N8, likely in galliform poultry since 2017/18 and both H5N5 and H5N1. All viruses belong to A/H5 clade 2.3.4.4b with closely related HA genes. Heterogeneity in Eurasian H5Nx HPAI emerging variants threatens poultry production, food security and veterinary public health.


Assuntos
Surtos de Doenças/veterinária , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Aves Domésticas/virologia , Animais , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Vírus da Influenza A/isolamento & purificação , Iraque/epidemiologia , Cazaquistão/epidemiologia , Países Baixos/epidemiologia , Filogenia , Federação Russa/epidemiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...