Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoporos Int ; 31(9): 1607-1627, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32458029

RESUMO

INTRODUCTION: The application of high-resolution peripheral quantitative computed tomography (HR-pQCT) to assess bone microarchitecture has grown rapidly since its introduction in 2005. As the use of HR-pQCT for clinical research continues to grow, there is an urgent need to form a consensus on imaging and analysis methodologies so that studies can be appropriately compared. In addition, with the recent introduction of the second-generation HrpQCT, which differs from the first-generation HR-pQCT in scan region, resolution, and morphological measurement techniques, there is a need for guidelines on appropriate reporting of results and considerations as the field adopts newer systems. METHODS: A joint working group between the International Osteoporosis Foundation, American Society of Bone and Mineral Research, and European Calcified Tissue Society convened in person and by teleconference over several years to produce the guidelines and recommendations presented in this document. RESULTS: An overview and discussion is provided for (1) standardized protocol for imaging distal radius and tibia sites using HR-pQCT, with the importance of quality control and operator training discussed; (2) standardized terminology and recommendations on reporting results; (3) factors influencing accuracy and precision error, with considerations for longitudinal and multi-center study designs; and finally (4) comparison between scanner generations and other high-resolution CT systems. CONCLUSION: This article addresses the need for standardization of HR-pQCT imaging techniques and terminology, provides guidance on interpretation and reporting of results, and discusses unresolved issues in the field.


Assuntos
Densidade Óssea , Osteoporose , Humanos , Osteoporose/diagnóstico por imagem , Rádio (Anatomia)/diagnóstico por imagem , Tíbia , Tomografia Computadorizada por Raios X
2.
Osteoporos Int ; 31(3): 567-576, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31784787

RESUMO

Manual correction of automatically generated contours for high-resolution peripheral quantitative computed tomography can be time consuming and introduces precision error. However, bias related to the automated protocol is unknown. This study provides insight into error bias that is present when using uncorrected contours and inter-operator precision error based on operator training. INTRODUCTION: High-resolution peripheral quantitative computed tomography workflow includes manually correcting contours generated by the manufacturer's automated protocol. There is interest in minimizing corrections to save time and reduce precision error; however, bias related to the automated protocol is unknown. This study quantifies error bias when contours are uncorrected and identifies the impact of operator training on bias and precision error. METHODS: Forty-five radii and tibiae scans across a representative range of bone density were analyzed using the automated and manually corrected contours of three operators, with training ranging from beginner to expert, and compared with a "ground truth" to estimate bias. Inter-operator precision was measured across operators. RESULTS: The tibia had greater error bias than the radius when contours were uncorrected, with compartmental bone mineral densities and cortical microarchitecture having greatest biases, which could have significant implications for interpretation of studies using this skeletal site. Bias and precision error were greatest when contours were corrected by the beginner operator; however, when this operator was removed, bias was no longer present and inter-operator precision was between 0.01 and 3.74% for all parameters except cortical porosity. CONCLUSION: These findings establish the need for manual correction and provide guidance on operator training needed to maximize workflow efficiency.


Assuntos
Osso e Ossos , Rádio (Anatomia) , Viés , Densidade Óssea , Humanos , Rádio (Anatomia)/diagnóstico por imagem , Reprodutibilidade dos Testes , Tíbia/diagnóstico por imagem , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...