Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14182, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648787

RESUMO

The lateral lemniscus encompasses processing stages for binaural hearing, suppressing spurious frequencies and frequency integration. Within the lemniscal fibres three nuclei can be identified, termed after their location as dorsal, intermediate and ventral nucleus of the lateral lemniscus (DNLL, INLL and VNLL). While the DNLL and VNLL have been functionally and anatomically characterized, less is known about INLL neurons. Here, we quantitatively describe the morphology, the cellular orientation and distribution of synaptic contact sites along dendrites in mature Mongolian gerbils. INLL neurons are largely non-inhibitory and morphologically heterogeneous with an overall perpendicular orientation regarding the lemniscal fibers. Dendritic ranges are heterogeneous and can extend beyond the nucleus border. INLL neurons receive VGluT1/2 containing glutamatergic and a mix of GABA- and glycinergic inputs distributed over the entire dendrite. Input counts suggest that numbers of excitatory exceed the inhibitory contact sites. Axonal projections indicate connectivity to ascending and descending auditory structures. Our data show that INLL neurons form a morphologically heterogeneous continuum and incoming auditory information is processed on thin dendrites of various length and biased to perpendicular orientation. Together with the different axonal projection patterns, this indicates that the INLL is a highly complex structure that might hold many unexplored auditory functions.


Assuntos
Núcleo Celular , Neurônios , Animais , Gerbillinae , Vias Auditivas , Axônios
2.
J Neurosci ; 43(15): 2714-2729, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36898837

RESUMO

Comparative analysis of evolutionarily conserved neuronal circuits between phylogenetically distant mammals highlights the relevant mechanisms and specific adaptations to information processing. The medial nucleus of the trapezoid body (MNTB) is a conserved mammalian auditory brainstem nucleus relevant for temporal processing. While MNTB neurons have been extensively investigated, a comparative analysis of phylogenetically distant mammals and the spike generation is missing. To understand the suprathreshold precision and firing rate, we examined the membrane, voltage-gated ion channel and synaptic properties in Phyllostomus discolor (bat) and in Meriones unguiculatus (rodent) of either sex. Between the two species, the membrane properties of MNTB neurons were similar at rest with only minor differences, while larger dendrotoxin (DTX)-sensitive potassium currents were found in gerbils. Calyx of Held-mediated EPSCs were smaller and frequency dependence of short-term plasticity (STP) less pronounced in bats. Simulating synaptic train stimulations in dynamic clamp revealed that MNTB neurons fired with decreasing success rate near conductance threshold and at increasing stimulation frequency. Driven by STP-dependent conductance decrease, the latency of evoked action potentials increased during train stimulations. The spike generator showed a temporal adaptation at the beginning of train stimulations that can be explained by sodium current inactivation. Compared with gerbils, the spike generator of bats sustained higher frequency input-output functions and upheld the same temporal precision. Our data mechanistically support that MNTB input-output functions in bats are suited to sustain precise high-frequency rates, while for gerbils, temporal precision appears more relevant and an adaptation to high output-rates can be spared.SIGNIFICANCE STATEMENT Neurons in the mammalian medial nucleus of the trapezoid body (MNTB) convey precise, faithful inhibition vital for binaural hearing and gap detection. The MNTB's structure and function appear evolutionarily well conserved. We compared the cellular physiology of MNTB neurons in bat and gerbil. Because of their adaptations to echolocation or low frequency hearing both species are model systems for hearing research, yet with largely overlapping hearing ranges. We find that bat neurons sustain information transfer with higher ongoing rates and precision based on synaptic and biophysical differences in comparison to gerbils. Thus, even in evolutionarily conserved circuits species-specific adaptations prevail, highlighting the importance for comparative research to differentiate general circuit functions and their specific adaptations.


Assuntos
Quirópteros , Corpo Trapezoide , Animais , Potenciais de Ação/fisiologia , Corpo Trapezoide/fisiologia , Gerbillinae , Neurônios/fisiologia , Vias Auditivas/fisiologia
3.
Microbiol Spectr ; : e0309822, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916937

RESUMO

Bats are a natural reservoir for many viruses and are considered to play an important role in the interspecies transmission of viruses. To analyze the susceptibility of bat airway cells to infection by viruses of other mammalian species, we developed an airway organoid culture model derived from airways of Carollia perspicillata. Application of specific antibodies for fluorescent staining indicated that the cell composition of organoids resembled those of bat trachea and lungs as determined by immunohistochemistry. Infection studies indicated that Carollia perspicillata bat airway organoids (AOs) from the trachea or the lung are highly susceptible to infection by two different porcine influenza A viruses. The bat AOs were also used to develop an air-liquid interface (ALI) culture system of filter-grown epithelial cells. Infection of these cells showed the same characteristics, including lower virulence and enhanced replication and release of the H1N1/2006 virus compared to infection with H3N2/2007. These observations agreed with the results obtained by infection of porcine ALI cultures with these two virus strains. Interestingly, lectin staining indicated that bat airway cells only contain a small amount of alpha 2,6-linked sialic acid, the preferred receptor determinant for mammalian influenza A viruses. In contrast, large amounts of alpha 2,3-linked sialic acid, the preferred receptor determinant for avian influenza viruses, are present in bat airway epithelial cells. Therefore, bat airway cells may be susceptible not only to mammalian but also to avian influenza viruses. Our culture models, which can be extended to other parts of the airways and to other species, provide a promising tool to analyze virus infectivity and the transmission of viruses both from bats to other species and from other species to bats. IMPORTANCE We developed an organoid culture system derived from the airways of the bat species Carollia perspicillata. Using this cell system, we showed that the airway epithelium of these bats is highly susceptible to infection by influenza viruses of other mammalian species and thus is not a barrier for interspecies transmission. These organoids provide an almost unlimited supply of airway epithelial cells that can be used to generate well-differentiated epithelial cells and perform infection studies. The establishment of the organoid model required only three animals, and can be extended to other epithelia (nose, intestine) as well as to other species (bat and other animal species). Therefore, organoids promise to be a valuable tool for future zoonosis research on the interspecies transmission of viruses (e.g., bat → intermediate host → human).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...