Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(6)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38516892

RESUMO

Tregs have the potential to establish long-term immune tolerance in patients recently diagnosed with type 1 diabetes (T1D) by preserving ß cell function. Adoptive transfer of autologous thymic Tregs, although safe, exhibited limited efficacy in previous T1D clinical trials, likely reflecting a lack of tissue specificity, limited IL-2 signaling support, and in vivo plasticity of Tregs. Here, we report a cell engineering strategy using bulk CD4+ T cells to generate a Treg cell therapy (GNTI-122) that stably expresses FOXP3, targets the pancreas and draining lymph nodes, and incorporates a chemically inducible signaling complex (CISC). GNTI-122 cells maintained an expression profile consistent with Treg phenotype and function. Activation of CISC using rapamycin mediated concentration-dependent STAT5 phosphorylation and, in concert with T cell receptor engagement, promoted cell proliferation. In response to the cognate antigen, GNTI-122 exhibited direct and bystander suppression of polyclonal, islet-specific effector T cells from patients with T1D. In an adoptive transfer mouse model of T1D, a mouse engineered-Treg analog of GNTI-122 trafficked to the pancreas, decreased the severity of insulitis, and prevented progression to diabetes. Taken together, these findings demonstrate in vitro and in vivo activity and support further development of GNTI-122 as a potential treatment for T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Linfócitos T Reguladores , Autoantígenos , Tolerância Imunológica
2.
Cancer Immunol Immunother ; 70(9): 2701-2719, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34244816

RESUMO

Recombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


Assuntos
Ligante 4-1BB/genética , Terapia Baseada em Transplante de Células e Tecidos , Eritrócitos/metabolismo , Expressão Gênica , Terapia Genética , Interleucina-15/genética , Ligante 4-1BB/metabolismo , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Precursoras Eritroides/metabolismo , Feminino , Citometria de Fluxo , Genes Reporter , Engenharia Genética , Terapia Genética/métodos , Humanos , Interleucina-15/metabolismo , Camundongos , Modelos Animais , Ligação Proteica , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nat Commun ; 12(1): 2637, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976146

RESUMO

Checkpoint inhibitors and T-cell therapies have highlighted the critical role of T cells in anti-cancer immunity. However, limitations associated with these treatments drive the need for alternative approaches. Here, we engineer red blood cells into artificial antigen-presenting cells (aAPCs) presenting a peptide bound to the major histocompatibility complex I, the costimulatory ligand 4-1BBL, and interleukin (IL)-12. This leads to robust, antigen-specific T-cell expansion, memory formation, additional immune activation, tumor control, and antigen spreading in tumor models in vivo. The presence of 4-1BBL and IL-12 induces minimal toxicities due to restriction to the vasculature and spleen. The allogeneic aAPC, RTX-321, comprised of human leukocyte antigen-A*02:01 presenting the human papilloma virus (HPV) peptide HPV16 E711-19, 4-1BBL, and IL-12 on the surface, activates HPV-specific T cells and promotes effector function in vitro. Thus, RTX-321 is a potential 'off-the-shelf' in vivo cellular immunotherapy for treating HPV + cancers, including cervical and head/neck cancers.


Assuntos
Células Apresentadoras de Antígenos/transplante , Engenharia Celular/métodos , Eritrócitos/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Ligante 4-1BB/genética , Ligante 4-1BB/imunologia , Ligante 4-1BB/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Modelos Animais de Doenças , Eritrócitos/metabolismo , Feminino , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-12/metabolismo , Ativação Linfocitária , Neoplasias/imunologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/metabolismo , Cultura Primária de Células , Linfócitos T/imunologia , Linfócitos T/transplante , Transplante Homólogo/métodos
4.
Acad Med ; 96(8): 1116-1119, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33913441

RESUMO

In 2020, the National Resident Matching Program (NRMP) sponsored the inaugural "Single Match"-the first time that seniors and graduates of U.S. MD-granting and DO-granting schools participated in one Match. In honor of the Single Match milestone, the authors examine the NRMP's history, reflecting on the organization's efforts since the 1950s to support learners and the graduate medical education community by fostering a responsive, robust matching program while remaining true to its founding principles to provide parity of experience for applicants and reduce coercive practices. The chaos and stress associated with the pre-Match days in the 1920s and 1930s that led to the call for a national clearinghouse are highlighted as are significant NRMP accomplishments, from the organization's incorporation as a 501(c)(3) organization in 1953 as a simple internship placement system through the first Single Match. Recognizing that the current transition to residency is not without its stressors, the authors note that the NRMP remains committed and willing to continue to evolve and identify innovative and meaningful ways to address learner needs and improve the transition to residency.


Assuntos
Internato e Residência , Educação de Pós-Graduação em Medicina , Humanos , Estados Unidos
5.
Nanomedicine ; 17: 71-81, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30654182

RESUMO

MM-302 is an anti-HER2 antibody-targeted pegylated liposomal doxorubicin designed to deliver doxorubicin specifically to HER2-expressing solid tumors. The delivery and activity of MM-302 were evaluated in orthotopic, transgenic, and intravenous breast cancer models expressing varying levels of HER2 that metastasize to some of the most common sites of dissemination for breast cancer, namely, lung, liver, and brain. Metastatic burden was quantified by gross evaluation, immunohistochemistry (IHC), and bioluminescent imaging. Liposome delivery was quantified by IHC and ex vivo fluorescent imaging. Unlike its non-targeted counterpart, pegylated liposomal doxorubicin (PLD), MM-302 showed activity at controlling both primary and metastatic tumor burden in all models tested. The effect of HER2-targeting was greatest in the lung where lymphatic vessel density and MM-302 delivery were highest. Our data indicate that the therapeutic advantage of actively targeting a nanoliposome with an antibody is influenced by both target expression and the tumor microenvironment.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/análogos & derivados , Imunoconjugados/química , Lipossomos/química , Anticorpos de Cadeia Única/química , Animais , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Camundongos , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/uso terapêutico , Receptor ErbB-2/metabolismo , Microambiente Tumoral/efeitos dos fármacos
6.
Br J Cancer ; 119(9): 1086-1093, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30361524

RESUMO

BACKGROUND: This phase 1 dose-escalation trial studied MM-302, a novel HER2-targeted PEGylated antibody-liposomal doxorubicin conjugate, in HER2-positive locally advanced/metastatic breast cancer. METHODS: Patients were enrolled in four cohorts: MM-302 monotherapy (8, 16, 30, 40, and 50 mg/m2 every 4 weeks [q4w]); MM-302 (30 or 40 mg/m2 q4w) plus trastuzumab (4 mg/kg q2w); MM-302 (30 mg/m2) plus trastuzumab (6 mg/kg) q3w; MM-302 (30 mg/m2) plus trastuzumab (6 mg/kg) and cyclophosphamide (450 mg/m2) q3w. RESULTS: Sixty-nine patients were treated. The most common adverse events (AEs) were fatigue and nausea. Grade 3/4 AEs of special interest included neutropenia, fatigue, mucosal inflammation, anemia, thrombocytopenia, febrile neutropenia, and palmar-plantar erythrodysesthesia. The MTD was not reached. With MM-302 ≥ 30 mg/m2, overall response rate (ORR) was 13% and median progression-free survival (mPFS) 7.4 months (95% CI: 3·5-10·9) in all arms. In 25 anthracycline-naïve patients, ORR was 28·0% and mPFS 10·9 months (95% CI: 1·8-15·3). Imaging with 64Cu-labeled MM-302 visualized tumor-drug penetrance in tumors throughout the body, including the brain. CONCLUSION: MM-302 monotherapy, in combination with trastuzumab, or trastuzumab plus cyclophosphamide, was well tolerated and showed promising efficacy. The selected phase 2 MM-302 dose was 30 mg/m2 plus 6 mg/kg trastuzumab q3w.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ciclofosfamida/administração & dosagem , Doxorrubicina/análogos & derivados , Imunoconjugados/administração & dosagem , Receptor ErbB-2/genética , Anticorpos de Cadeia Única/administração & dosagem , Trastuzumab/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Encéfalo/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Ciclofosfamida/efeitos adversos , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacocinética , Esquema de Medicação , Feminino , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/farmacocinética , Anticorpos de Cadeia Única/efeitos adversos , Anticorpos de Cadeia Única/farmacocinética , Análise de Sobrevida , Trastuzumab/efeitos adversos , Resultado do Tratamento
7.
Theranostics ; 8(9): 2300-2312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721081

RESUMO

Deposition of liposomal drugs into solid tumors is a potentially rate-limiting step for drug delivery and has substantial variability that may influence probability of response. Tumor deposition is a shared mechanism for liposomal therapeutics such that a single companion diagnostic agent may have utility in predicting response to multiple nanomedicines. Methods: We describe the development, characterization and preclinical proof-of-concept of the positron emission tomography (PET) agent, MM-DX-929, a drug-free untargeted 100 nm PEGylated liposome stably entrapping a chelated complex of 4-DEAP-ATSC and 64Cu (copper-64). MM-DX-929 is designed to mimic the biodistribution of similarly sized therapeutic agents and enable quantification of deposition in solid tumors. Results: MM-DX-929 demonstrated sufficient in vitro and in vivo stability with PET images accurately reflecting the disposition of liposome nanoparticles over the time scale of imaging. MM-DX-929 is also representative of the tumor deposition and intratumoral distribution of three different liposomal drugs, including targeted liposomes and those with different degrees of PEGylation. Furthermore, stratification using a single pre-treatment MM-DX-929 PET assessment of tumor deposition demonstrated that tumors with high MM-DX-929 deposition predicted significantly greater anti-tumor activity after multi-cycle treatments with different liposomal drugs. In contrast, MM-DX-929 tumor deposition was not prognostic in untreated tumor-bearing xenografts, nor predictive in animals treated with small molecule chemotherapeutics. Conclusions: These data illustrate the potential of MM-DX-929 PET as a companion diagnostic strategy to prospectively select patients likely to respond to liposomal drugs or nanomedicines of similar molecular size.


Assuntos
Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/química , Lipossomos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Feminino , Células HT29 , Humanos , Camundongos , Nanomedicina/métodos , Neoplasias/metabolismo , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual/fisiologia
8.
Clin Cancer Res ; 23(15): 4190-4202, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28298546

RESUMO

Purpose: Therapeutic nanoparticles are designed to deliver their drug payloads through enhanced permeability and retention (EPR) in solid tumors. The extent of EPR and its variability in human tumors is highly debated and has been proposed as an explanation for variable responses to therapeutic nanoparticles in clinical studies.Experimental Design: We assessed the EPR effect in patients using a 64Cu-labeled nanoparticle, 64Cu-MM-302 (64Cu-labeled HER2-targeted PEGylated liposomal doxorubicin), and imaging by PET/CT. Nineteen patients with HER2-positive metastatic breast cancer underwent 2 to 3 PET/CT scans postadministration of 64Cu-MM-302 as part of a clinical trial of MM-302 plus trastuzumab with and without cyclophosphamide (NCT01304797).Results: Significant background uptake of 64Cu-MM-302 was observed in liver and spleen. Tumor accumulation of 64Cu-MM-302 at 24 to 48 hours varied 35-fold (0.52-18.5 %ID/kg), including deposition in bone and brain lesions, and was independent of systemic plasma exposure. Computational analysis quantified rates of deposition and washout, indicating peak liposome deposition at 24 to 48 hours. Patients were classified on the basis of 64Cu-MM-302 lesion deposition using a cut-off point that is comparable with a response threshold in preclinical studies. In a retrospective exploratory analysis of patient outcomes relating to drug levels in tumor lesions, high 64Cu-MM-302 deposition was associated with more favorable treatment outcomes (HR = 0.42).Conclusions: These findings provide important evidence and quantification of the EPR effect in human metastatic tumors and support imaging nanoparticle deposition in tumors as a potential means to identify patients well suited for treatment with therapeutic nanoparticles. Clin Cancer Res; 23(15); 4190-202. ©2017 AACR.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/análogos & derivados , Nanopartículas/administração & dosagem , Adolescente , Adulto , Idoso , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos da radiação , Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/química , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/efeitos dos fármacos , Pessoa de Meia-Idade , Nanopartículas/química , Metástase Neoplásica , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor ErbB-2/sangue , Baço/diagnóstico por imagem , Baço/patologia , Trastuzumab/administração & dosagem
9.
BMC Cancer ; 16: 352, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27259714

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-positive breast cancer is a particularly aggressive form of the disease, and ultimately progresses in patients with metastases on standard therapies. Anthracyclines, such as doxorubicin, are an effective treatment for HER2-positive breast cancer, particularly when administered in combination with trastuzumab - however, doxorubicin-related cardiotoxicity has limited its use. Many patients are therefore never treated with anthracyclines, even upon disease progression, despite the potential for benefit. MM-302 is a novel, HER2-targeted antibody-liposomal doxorubicin conjugate that specifically targets HER2-overexpressing cells. Preclinical and Phase 1 data suggest that MM-302, as a monotherapy or in combination with trastuzumab, could be effective for managing previously treated, anthracycline-naïve, HER2-positive breast cancer, without the cardiotoxicity observed with free doxorubicin formulations. METHODS/DESIGN: HERMIONE is an open-label, multicenter, randomized (1:1) Phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician's choice (gemcitabine, capecitabine, or vinorelbine) plus trastuzumab planned to enroll 250 anthracycline-naïve patients with locally advanced/metastatic HER2-positive breast cancer. Key inclusion criteria are: previous treatment with trastuzumab (with or without pertuzumab) in any setting; refractory or intolerant to pertuzumab (refractory to pertuzumab defined as progression in the locally advanced or metastatic setting, or disease recurrence during or within 12 months of completing pertuzumab-containing neoadjuvant and/or adjuvant therapy); and disease progression on, or intolerant to, ado-trastuzumab emtansine for locally advanced or metastatic disease. The trial is currently being conducted at sites in the USA, Canada, and Western Europe. Treatment will be administered in 21-day cycles, and will be continued until disease progression or unacceptable toxicity. The primary endpoint is independently assessed progression-free survival (PFS). Tumor response will be assessed every 6 weeks, and defined according to RECIST v1.1. Secondary endpoints include investigator-assessed PFS, overall survival (OS), OS rates at 6 months and 1 year, objective response rates, safety and tolerability, quality of life, and the pharmacokinetic profile of MM-302 plus trastuzumab. DISCUSSION: The HERMIONE study will evaluate the efficacy and safety of MM-302 plus trastuzumab in patients with refractory HER2-positive advanced/metastatic breast cancer for whom there are no standard of care therapies with a proven survival advantage. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT02213744 . Registration date: 06AUG2014.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/análogos & derivados , Imunoconjugados/uso terapêutico , Terapia de Alvo Molecular/métodos , Projetos de Pesquisa , Anticorpos de Cadeia Única/uso terapêutico , Neoplasias da Mama/patologia , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Doxorrubicina/uso terapêutico , Feminino , Humanos , Imunotoxinas/uso terapêutico , Metástase Neoplásica , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/administração & dosagem , Trastuzumab/efeitos adversos
10.
Cancer Res ; 76(6): 1517-27, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26759238

RESUMO

Trastuzumab is the standard of care for HER2-positive breast cancer patients, markedly improving disease-free and overall survival. Combined with chemotherapy, it enhances patient outcomes, but cardiotoxicity due to the trastuzumab treatment poses a serious adverse effect. MM-302 is a HER2-targeted PEGylated liposome that encapsulates doxorubicin to facilitate its delivery to HER2-overexpressing tumor cells while limiting exposure to nontarget tissues, including the heart. In this study, we evaluated the feasibility and preclinical activity of combining MM-302 with trastuzumab. MM-302 and trastuzumab target different domains of the HER2 receptor and thus could simultaneously bind HER2-overexpressing tumor cells in vitro and in vivo. Furthermore, trastuzumab did not disrupt the mechanism of action of MM-302 in delivering doxorubicin to the n0ucleus and inducing DNA damage. Reciprocally, MM-302 did not interfere with the ability of trastuzumab to block prosurvival p-Akt signaling. Interestingly, coadministration of the two agents acutely increased the deposition of MM-302 in human xenograft tumors and subsequently increased the expression of the DNA damage marker p-p53. Finally, the combination of MM-302 and trastuzumab induced synergistic antitumor activity in HER2-overexpressing xenograft models of breast and gastric cancer. Collectively, our findings highlight a novel combination therapy that efficiently targets HER2-overexpressing cells through multiple mechanisms and support the ongoing investigation of combined MM-302/trastuzumab therapy for HER2-positive metastatic breast cancer in a randomized phase II clinical trial.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/genética , Neoplasias Gástricas/tratamento farmacológico , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Sinergismo Farmacológico , Feminino , Humanos , Polietilenoglicóis/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Trastuzumab/administração & dosagem , Proteína Supressora de Tumor p53/metabolismo
11.
Mol Cancer Ther ; 14(9): 2060-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162690

RESUMO

Given the bulky nature of nanotherapeutics relative to small molecules, it is hypothesized that effective tumor delivery and penetration are critical barriers to their clinical activity. HER2-targeted PEGylated liposomal doxorubicin (MM-302, HER2-tPLD) is an antibody-liposomal drug conjugate designed to deliver doxorubicin to HER2-overexpressing cancer cells while limiting uptake into nontarget cells. In this work, we demonstrate that the administration and appropriate dose sequencing of cyclophosphamide can improve subsequent MM-302 delivery and enhance antitumor activity in preclinical models without negatively affecting nontarget tissues, such as the heart and skin. We demonstrate that this effect is critically dependent on the timing of cyclophosphamide administration. Furthermore, the effect was found to be unique to cyclophosphamide and related analogues, and not shared by other agents, such as taxanes or eribulin, under the conditions examined. Analysis of the cyclophosphamide-treated tumors suggests that the mechanism for improved MM-302 delivery involves the induction of tumor cell apoptosis, reduction of overall tumor cell density, substantial lowering of interstitial fluid pressure, and increasing vascular perfusion. The novel dosing strategy for cyclophosphamide described herein is readily translatable to standard clinical regimens, represents a potentially significant advance in addressing the drug delivery challenge, and may have broad applicability for nanomedicines. This work formed the basis for clinical evaluation of cyclophosphamide for improving liposome deposition as part of an ongoing phase I clinical trial of MM-302 in HER2-positive metastatic breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Ciclofosfamida/farmacologia , Doxorrubicina/análogos & derivados , Receptor ErbB-2/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Ciclofosfamida/administração & dosagem , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Sinergismo Farmacológico , Feminino , Humanos , Ifosfamida/administração & dosagem , Ifosfamida/farmacologia , Camundongos , Polietilenoglicóis/administração & dosagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
12.
EJNMMI Res ; 5: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25918676

RESUMO

BACKGROUND: Features of the tumor microenvironment influence the efficacy of cancer nanotherapeutics. The ability to directly radiolabel nanotherapeutics offers a valuable translational tool to obtain biodistribution and tumor deposition data, testing the hypothesis that the extent of delivery predicts therapeutic outcome. In support of a first in-human clinical trial with (64)Cu-labeled HER2-targeted liposomal doxorubicin ((64)Cu-MM-302), a preclinical dosimetric analysis was performed. METHODS: Whole-body biodistribution and pharmacokinetic data were obtained in mice that received (64)Cu-MM-302 and used to estimate absorbed radiation doses in normal human organs. PET/CT imaging revealed non-uniform distribution of (64)Cu signal in mouse kidneys. Kidney micro-dosimetry analysis was performed in mice and squirrel monkeys, using a physiologically based pharmacokinetic model to estimate the full dynamics of the (64)Cu signal in monkeys. RESULTS: Organ-level dosimetric analysis of mice receiving (64)Cu-MM-302 indicated that the heart was the organ receiving the highest radiation absorbed dose, due to extended liposomal circulation. However, PET/CT imaging indicated that (64)Cu-MM-302 administration resulted in heterogeneous exposure in the kidney, with a focus of (64)Cu activity in the renal pelvis. This result was reproduced in primates. Kidney micro-dosimetry analysis illustrated that the renal pelvis was the maximum exposed tissue in mice and squirrel monkeys, due to the highly concentrated signal within the small renal pelvis surface area. CONCLUSIONS: This study was used to select a starting clinical radiation dose of (64)Cu-MM-302 for PET/CT in patients with advanced HER2-positive breast cancer. Organ-level dosimetry and kidney micro-dosimetry results predicted that a radiation dose of 400 MBq of (64)Cu-MM-302 should be acceptable in patients.

13.
Nanomedicine ; 11(1): 155-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25200610

RESUMO

Effective drug delivery to tumors is a barrier to treatment with nanomedicines. Non-invasively tracking liposome biodistribution and tumor deposition in patients may provide insight into identifying patients that are well-suited for liposomal therapies. We describe a novel gradient-loadable chelator, 4-DEAP-ATSC, for incorporating (64)Cu into liposomal therapeutics for positron emission tomographic (PET). (64)Cu chelated to 4-DEAP-ATSC (>94%) was loaded into PEGylated liposomal doxorubicin (PLD) and HER2-targeted PLD (MM-302) with efficiencies >90%. (64)Cu-MM-302 was stable in human plasma for at least 48h. PET/CT imaging of xenografts injected with (64)Cu-MM-302 revealed biodistribution profiles that were quantitatively consistent with tissue-based analysis, and tumor (64)Cu positively correlated with liposomal drug deposition. This loading technique transforms liposomal therapeutics into theranostics and is currently being applied in a clinical trial (NCT01304797) to non-invasively quantify MM-302 tumor deposition, and evaluate its potential as a prognostic tool for predicting treatment outcome of nanomedicines.


Assuntos
Isótopos de Carbono/química , Quelantes/química , Doxorrubicina/análogos & derivados , Lipossomos/química , Nanomedicina/métodos , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Cobre/química , Radioisótopos de Cobre/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Transplante de Neoplasias , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
14.
Am J Pathol ; 183(5): 1446-1460, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24035511

RESUMO

Human epidermal growth factor receptor 2 (HER2) is an important biomarker for breast and gastric cancer prognosis and patient treatment decisions. HER2 positivity, as defined by IHC or fluorescent in situ hybridization testing, remains an imprecise predictor of patient response to HER2-targeted therapies. Challenges to correct HER2 assessment and patient stratification include intratumoral heterogeneity, lack of quantitative and/or objective assays, and differences between measuring HER2 amplification at the protein versus gene level. We developed a novel immunofluorescence method for quantitation of HER2 protein expression at the single-cell level on FFPE patient samples. Our assay uses automated image analysis to identify and classify tumor versus non-tumor cells, as well as quantitate the HER2 staining for each tumor cell. The HER2 staining level is converted to HER2 protein expression using a standard cell pellet array stained in parallel with the tissue sample. This approach allows assessment of HER2 expression and heterogeneity within a tissue section at the single-cell level. By using this assay, we identified distinct subgroups of HER2 heterogeneity within traditional definitions of HER2 positivity in both breast and gastric cancers. Quantitative assessment of intratumoral HER2 heterogeneity may offer an opportunity to improve the identification of patients likely to respond to HER2-targeted therapies. The broad applicability of the assay was demonstrated by measuring HER2 expression profiles on multiple tumor types, and on normal and diseased heart tissues.


Assuntos
Heterogeneidade Genética , Neoplasias/classificação , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Análise de Célula Única/métodos , Animais , Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Análise por Conglomerados , Feminino , Imunofluorescência , Humanos , Camundongos , Camundongos Nus , Neoplasias/patologia , Padrões de Referência , Reprodutibilidade dos Testes , Neoplasias Gástricas/classificação , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Análise Serial de Tecidos , Neoplasias da Bexiga Urinária/classificação , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
15.
Mol Cancer Ther ; 12(9): 1816-28, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23723124

RESUMO

Numerous targeted nanotherapeutics have been described for potential treatment of solid tumors. Although attention has focused on antigen selection and molecular design of these systems, there has been comparatively little study of how cellular heterogeneity influences interaction of targeted nanoparticles with tumor cells. Antigens, such as HER2/ERBB2, are heterogeneously expressed across different indications, across patients, and within individual tumors. Furthermore, antigen expression in nontarget tissues necessitates optimization of the therapeutic window. Understanding the performance of a given nanoparticle under different regimens of antigen expression has the ability to inform patient selection and clinical development decisions. In this work, HER2-targeted liposomal doxorubicin was used as a model-targeted nanoparticle to quantitatively investigate the effect of HER2 expression levels on delivery of doxorubicin to the nucleus. We find quantitatively greater nuclear doxorubicin delivery with increasing HER2 expression, exhibiting a threshold effect at approximately 2 × 10(5) HER2 receptors/cell. Kinetic modeling indicated that the threshold effect arises from multiple low-affinity interactions between the targeted liposome and HER2. These results support previous data showing little or no uptake into human cardiomyocytes, which express levels of HER2 below the threshold. Finally, these results suggest that HER2-targeted liposomal doxorubicin may effectively target tumors that fall below traditional definitions of HER2-positive tumors, thereby expanding the potential population of patients that might benefit from this agent.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Neoplasias/tratamento farmacológico , Receptor ErbB-2/genética , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipossomos , Camundongos , Terapia de Alvo Molecular , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo
16.
Toxicol Appl Pharmacol ; 262(1): 1-10, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22676972

RESUMO

Anthracycline-based regimens are a mainstay of early breast cancer therapy, however their use is limited by cardiac toxicity. The potential for cardiotoxicity is a major consideration in the design and development of combinatorial therapies incorporating anthracyclines and agents that target the HER2-mediated signaling pathway, such as trastuzumab. In this regard, HER2-targeted liposomal doxorubicin was developed to provide clinical benefit by both reducing the cardiotoxicity observed with anthracyclines and enhancing the therapeutic potential of HER2-based therapies that are currently available for HER2-overexpressing cancers. While documenting the enhanced therapeutic potential of HER2-targeted liposomal doxorubicin can be done with existing models, there has been no validated human cardiac cell-based assay system to rigorously assess the cardiotoxicity of anthracyclines. To understand if HER2-targeting of liposomal doxorubicin is possible with a favorable cardiac safety profile, we applied a human stem cell-derived cardiomyocyte platform to evaluate the doxorubicin exposure of human cardiac cells to HER2-targeted liposomal doxorubicin. To the best of our knowledge, this is the first known application of a stem cell-derived system for evaluating preclinical cardiotoxicity of an investigational agent. We demonstrate that HER2-targeted liposomal doxorubicin has little or no uptake into human cardiomyocytes, does not inhibit HER2-mediated signaling, results in little or no evidence of cardiomyocyte cell death or dysfunction, and retains the low penetration into heart tissue of liposomal doxorubicin. Taken together, this data ultimately led to the clinical decision to advance this drug to Phase I clinical testing, which is now ongoing as a single agent in HER2-expressing cancers.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/toxicidade , Neoplasias da Mama/patologia , Doxorrubicina/administração & dosagem , Doxorrubicina/toxicidade , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Nus , Miócitos Cardíacos/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Int J Oncol ; 31(4): 813-22, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17786312

RESUMO

Ovarian cancer is the fourth most common cancer among women and existing treatment is not routinely curative. One new strategy for cancer therapy is the selective delivery of TNFalpha to tumors via adenovirus vectors. We have tested the combination of two modifications to adenovirus vectors designed to limit delivery to tumors, capsid modification and expression control. To target alpha(v)beta(3/5) integrin receptors that are highly expressed in tumor and sparsely expressed in the epithelial layer of peritoneum, we modified the capsid fiber and penton base to remove native receptor binding and incorporated an RGD-4C motif in the fiber knob (Ad.PB*F*RGD). This vector exhibits effective gene transfer in all of the alpha(v)beta(3/5)-positive ovarian cancer cells tested in vitro and in vivo. Importantly, the Ad.PB*F*RGD vector is able to transduce ovarian tumor nodules and avoid infecting the normal mesothelial cells that line the intraperitoneal space following intraperitoneal administration. To further increase selectivity, different promoters were incorporated into the capsid-modified vector to confer the expression of the hTNFalpha therapeutic gene. We analyzed both constitutive (CMV or RSV) and potentially tumor selective promoters (MUC-1, E2F or hTERT) in terms of efficacy, selectivity and safety. TNF-expressing Ad.PB*F*RGD vectors containing the MUC-1 promoter showed anti-tumor activity in two ovarian cancer xenograft models (Caov3 and Igr-ov1) with little evidence of toxicity or systemic TNF. The data indicate that combination of capsid modification and transcriptional regulation of expression is a promising strategy for development of a new ovarian cancer treatment.


Assuntos
Adenoviridae/genética , Terapia Genética , Vetores Genéticos , Integrina alfaVbeta3/metabolismo , Oligopeptídeos/metabolismo , Neoplasias Ovarianas/terapia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Capsídeo/metabolismo , Feminino , Marcação de Genes , Técnicas de Transferência de Genes , Humanos , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/terapia , Regiões Promotoras Genéticas , Taxa de Sobrevida , Transdução Genética , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/genética
18.
J Virol ; 80(11): 5523-30, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16699033

RESUMO

On the basis of the concept that the capsid proteins of adenovirus (Ad) gene transfer vectors can be genetically manipulated to enhance the immunogenicity of Ad-based vaccines, the present study compared the antiantigen immunogenicity of Ad vectors with a common epitope of the hemagglutinin (HA) protein of the influenza A virus incorporated into the outer Ad capsid protein hexon, penton base, fiber knob, or protein IX. Incorporation of the same epitope into the different capsid proteins provided insights into the correlation between epitope position and antiepitope immunity. Following immunization of three different strains of mice (C57BL/6, BALB/c, and CBA) with either an equal number of Ad particles (resulting in a different total HA copy number) or different Ad particle numbers (to achieve the same HA copy number), the highest primary (immunoglobulin M [IgM]) and secondary (IgG) anti-HA humoral and cellular CD4 gamma interferon and interleukin-4 responses against HA were always achieved with the Ad vector carrying the HA epitope in fiber knob. These observations suggest that the immune response against an epitope inserted into Ad capsid proteins is not necessarily dependent on the capsid protein number and imply that the choice of incorporation site in Ad capsid proteins in their use as vaccines needs to be compared in vivo.


Assuntos
Infecções por Adenoviridae/imunologia , Adenoviridae/imunologia , Proteínas do Capsídeo/imunologia , Epitopos/química , Vetores Genéticos/química , Adenoviridae/genética , Animais , Proteínas do Capsídeo/genética , Epitopos/genética , Epitopos/imunologia , Vetores Genéticos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Vacinas Virais
19.
Mol Ther ; 11(6): 950-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15922966

RESUMO

Acute myeloid leukemia (AML) cells can be differentiated into dendritic cells (DCs) using appropriate combinations of cytokines but generation of autologous antileukemic cytotoxic T cells using leukemic DCs remains difficult. Transduction by adenoviral vectors has been reported to induce efficient maturation of monocyte-derived DCs but AML cells are generally resistant to adenoviral gene transfer. In this study we tested the effects of adenoviral TNF-alpha gene transfer on maturation of AML cells using the fiber-modified AdTNF.F(pK7) adenovirus. All samples expressed high and sustained levels of TNF-alpha following transduction. AdTNF.F(pK7) induced significantly greater maturation of AML cells into antigen-presenting cells (APC) than did recombinant TNF-alpha or control adenoviral vector. Maturation of leukemic cells into APCs was mediated at least partially via a PI3K/mTOR pathway, as the inhibitors LY294002, wortmannin, and rapamycin inhibited the maturation effect induced by the AdTNF.F(pK7) adenovirus. In addition, CD8+ T cells expanded with AdTNF.F(pK7)-transduced AML cells showed greater expansion and specific CD8+ CTL activity against autologous AML cells than T cells expanded by other means. Thus, fiber-modified adenoviral vectors encoding TNF-alpha are able to maturate AML cells into APCs with high efficacy and reproducibility, providing a useful tool to generate efficiently specific CD8+ CTLs against leukemic disease.


Assuntos
Adenoviridae/genética , Citotoxicidade Imunológica/imunologia , Leucemia Mieloide/imunologia , Linfócitos T Citotóxicos/imunologia , Fator de Necrose Tumoral alfa/genética , Doença Aguda , Células Apresentadoras de Antígenos/imunologia , Proteínas do Capsídeo/genética , Diferenciação Celular , Técnicas de Cocultura , Humanos , Leucemia Mieloide/genética , Fenótipo , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/fisiologia , Transdução de Sinais , Serina-Treonina Quinases TOR , Transdução Genética
20.
J Clin Invest ; 115(5): 1281-9, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15841217

RESUMO

Pseudomonas aeruginosa is an important opportunistic pathogen that can cause chronic and often life-threatening infections of the respiratory tract, particularly in individuals with cystic fibrosis (CF). Because infections with P. aeruginosa remain the major cause of the high morbidity and mortality of CF, a vaccine against P. aeruginosa would be very useful for preventing this disorder. The outer membrane protein F (OprF) of P. aeruginosa is a promising vaccine candidate and various B cell epitopes within OprF have been identified. Given that adenovirus (Ad) vectors have strong immunogenic potential and can function as adjuvants for genetic vaccines, the present study evaluates the immunogenic and protective properties of a novel replication-deficient Ad vector in which the Ad hexon protein was modified to include a 14-amino acid epitope of P. aeruginosa OprF (Epi8) in loop 1 of the hypervariable region 5 of the hexon (AdZ.Epi8). Immunization of C57BL/6 mice with AdZ.Epi8 resulted in detectable serum anti-P. aeruginosa and anti-OprF humoral responses. These responses were haplotype dependent, with higher serum anti-OprF titers in CBA mice than in BALB/c or C57BL/6 mice. AdZ.Epi8 induced Epi8-specific IFN-gamma-positive CD4 and CD8 T cell responses and resulted in protection against a lethal pulmonary challenge with agar-encapsulated P. aeruginosa. Importantly, repeated administration of AdZ.Epi8 resulted in boosting of the anti-OprF humoral and anti-Epi8 cellular response, whereas no boosting effect was present in the response against the transgene beta-galactosidase. These observations suggest that Ad vectors expressing pathogen epitopes in their capsid will protect against an extracellular pathogen and will allow boosting of the epitope-specific humoral response with repeated administration, a strategy that should prove useful in developing Ad vectors as vaccines where humoral immunity will be protective.


Assuntos
Adenoviridae , Epitopos/imunologia , Vetores Genéticos , Porinas/imunologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Sequência de Aminoácidos , Animais , Formação de Anticorpos/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Haplótipos , Antígenos de Histocompatibilidade/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Dados de Sequência Molecular , Porinas/genética , Estrutura Secundária de Proteína , Infecções por Pseudomonas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...