Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(11): e0042323, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37846978

RESUMO

Koutango virus (KOUV), a close relative of West Nile virus, is highly neuroinvasive in animal models and has been associated with human disease. The complete genome of the KOUV prototype strain DakAnD5443 is reported here and may facilitate development of infectious clones for further characterization of this novel flavivirus.

2.
J Ageing Longev ; 3(2): 159-178, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37876943

RESUMO

One inevitable consequence of aging is the gradual deterioration of physical function and exercise capacity, driven in part by the adverse effect of age on muscle tissue. We hypothesized that relationships exist between age-related differentially expressed genes (DEGs) in skeletal muscle and age-associated declines in physical function and exercise capacity. Previously, male C57BL/6mice (6m, months old, 24m, and 28m) were tested for physical function using a composite scoring system (comprehensive functional assessment battery, CFAB) comprised of five well-validated tests of physical function. In this study, total RNA was isolated from tibialis anterior samples (n = 8) randomly selected from each age group in the parent study. Using Next Generation Sequencing RNAseq to determine DEGs during aging (6m vs. 28m, and 6m vs. 24m), we found a greater than five-fold increase in DEGs in 28m compared to the 24m. Furthermore, regression of the normalized expression of each DEG with the CFAB score of the corresponding mouse revealed many more DEGs strongly associated (R ≥ |0.70|) with functional status in the older mice. Gene ontology results indicate highly enriched axon guidance and acetyl choline receptor gene sets, suggesting that denervation/reinnervation flux might potentially play a critical role in functional decline. We conclude that specific age-related DEG patterns are associated with declines in physical function, and the data suggest accelerated aging occurring between 24 and 28 months.

3.
Elife ; 122023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261960

RESUMO

Genes associated with increased susceptibility to multiple sclerosis (MS) have been identified, but their functions are incompletely understood. One of these genes codes for the RNA helicase DExD/H-Box Polypeptide 39B (DDX39B), which shows genetic and functional epistasis with interleukin-7 receptor-α gene (IL7R) in MS-risk. Based on evolutionary and functional arguments, we postulated that DDX39B enhances immune tolerance thereby decreasing MS risk. Consistent with such a role we show that DDX39B controls the expression of many MS susceptibility genes and important immune-related genes. Among these we identified Forkhead Box P3 (FOXP3), which codes for the master transcriptional factor in CD4+/CD25+ T regulatory cells. DDX39B knockdown led to loss of immune-regulatory and gain of immune-effector expression signatures. Splicing of FOXP3 introns, which belong to a previously unrecognized type of introns with C-rich polypyrimidine tracts, was exquisitely sensitive to DDX39B levels. Given the importance of FOXP3 in autoimmunity, this work cements DDX39B as an important guardian of immune tolerance.


Assuntos
Esclerose Múltipla , Linfócitos T Reguladores , Humanos , Splicing de RNA , Regulação da Expressão Gênica , Esclerose Múltipla/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
4.
Viruses ; 15(2)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851495

RESUMO

The genetic diversities of mammalian tick-borne flaviviruses are poorly understood. We used next-generation sequencing (NGS) to deep sequence different viruses and strains belonging to this group of flaviviruses, including Central European tick-borne encephalitis virus (TBEV-Eur), Far Eastern TBEV (TBEV-FE), Langat (LGTV), Powassan (POWV), Deer Tick (DTV), Kyasanur Forest Disease (KFDV), Alkhurma hemorrhagic fever (AHFV), and Omsk hemorrhagic fever (OHFV) viruses. DTV, AHFV, and KFDV had the lowest genetic diversity, while POWV strains LEIV-5530 and LB, OHFV, TBEV-Eur, and TBEV-FE had higher genetic diversities. These findings are compatible with the phylogenetic relationships between the viruses. For DTV and POWV, the amount of genetic diversity could be explained by the number of tick vector species and amplification hosts each virus can occupy, with low diversity DTV having a more limited vector and host pool, while POWV with higher genetic diversities has been isolated from different tick species and mammals. It is speculated that high genetic diversity may contribute to the survival of the virus as it encounters these different environments.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Animais , Filogenia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Mamíferos , Variação Genética
5.
Emerg Microbes Infect ; 12(1): e2161422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36594261

RESUMO

The rapid evolution of SARS-CoV-2 Omicron sublineages mandates a better understanding of viral replication and cross-neutralization among these sublineages. Here we used K18-hACE2 mice and primary human airway cultures to examine the viral fitness and antigenic relationship among Omicron sublineages. In both K18-hACE2 mice and human airway cultures, Omicron sublineages exhibited a replication order of BA.5 ≥ BA.2 ≥ BA.2.12.1 > BA.1; no difference in body weight loss was observed among different sublineage-infected mice. The BA.1-, BA.2-, BA.2.12.1-, and BA.5-infected mice developed distinguishable cross-neutralizations against Omicron sublineages, but exhibited little neutralization against the index virus (i.e. USA-WA1/2020) or the Delta variant. Surprisingly, the BA.5-infected mice developed higher neutralization activity against heterologous BA.2 and BA.2.12.1 than that against homologous BA.5; serum neutralizing titres did not always correlate with viral replication levels in infected animals. Our results revealed a distinct antigenic cartography of Omicron sublineages and support the bivalent vaccine approach.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Melfalan , Anticorpos Antivirais , Anticorpos Neutralizantes
6.
Viruses ; 15(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36680235

RESUMO

Ilheus virus (ILHV) is a mosquito-borne flavivirus circulating throughout Central and South America and the Caribbean. It has been detected in several mosquito genera including Aedes and Culex, and birds are thought to be its primary amplifying and reservoir host. Here, we describe the genomic and morphologic characterization of ten ILHV strains. Our analyses revealed a high conservation of both the 5'- and 3'-untranslated regions but considerable divergence within the open reading frame. We also showed that ILHV displays a typical flavivirus structural and genomic organization. Our work lays the foundation for subsequent ILHV studies to better understand its transmission cycles, pathogenicity, and emergence potential.


Assuntos
Aedes , Culex , Flavivirus , Animais , Flavivirus/genética , América do Sul , Região do Caribe , Filogenia
7.
Sci Rep ; 12(1): 21584, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517580

RESUMO

Severe burn results in muscle wasting affecting quality of life in both children and adults. Biologic metabolic profiles are noticeably distinctive in childhood. We posit that muscle gene expression profiles are differentially regulated in response to severe burns in young animals. Twelve C57BL6 male mice, including young (5 weeks-old) and adults (11 weeks-old), received either scald burn, or sham procedure. Mouse muscle tissue was harvested 24 h later for Next Generation Sequence analysis. Our results showed 662 downregulated and 450 upregulated genes in gastrocnemius of young mice compared to adults without injury. After injury, we found 74/75 downregulated genes and 107/128 upregulated genes in both burned groups compared to respective uninjured age groups. VEGFA-VEGFR2, focal adhesion, and nuclear receptor meta-pathways were the top 3 gene pathways undergoing a differential change in response to age. Of note, the proteasome degradation pathway showed the most similar changes in both adult and young burned animals. This study demonstrates the characteristic profile of gene expression in skeletal muscle in young and adult burned mice. Prominent age effects were revealed in transcriptional levels with increased alterations of genes, miRNAs, pathways, and interactions.


Assuntos
Queimaduras , Músculo Esquelético , Transcriptoma , Animais , Masculino , Camundongos , Queimaduras/complicações , Queimaduras/genética , Queimaduras/metabolismo , Queimaduras/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Qualidade de Vida
8.
Gut Microbes ; 14(1): 2111950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35984745

RESUMO

Melioidosis is a disease caused by the Gram-negative bacillus Burkholderia pseudomallei (Bpm), commonly found in soil and water of endemic areas. Naturally acquired human melioidosis infections can result from either exposure through percutaneous inoculation, inhalation, or ingestion of soil-contaminated food or water. Our prior studies recognized Bpm as an effective enteric pathogen, capable of establishing acute or chronic gastrointestinal infections following oral inoculation. However, the specific mechanisms and virulence factors involved in the pathogenesis of Bpm during intestinal infection are unknown. In our current study, we standardized an in vitro intestinal infection model using primary intestinal epithelial cells (IECs) and demonstrated that Bpm requires a functional T6SS for full virulence. Further, we performed dual RNA-seq analysis on Bpm-infected IECs to evaluate differentially expressed host and bacterial genes in the presence or absence of a T6SS. Our results showed a dysregulation in the TNF-α signaling via NF-κB pathway in the absence of the T6SS, with some of the genes involved in inflammatory processes and cell death also affected. Analysis of the bacterial transcriptome identified virulence factors and regulatory proteins playing a role during infection, with association to the T6SS. By using a Bpm transposon mutant library and isogenic mutants, we showed that deletion of the bicA gene, encoding a putative T3SS/T6SS regulator, ablated intracellular survival and plaque formation by Bpm and impacted survival and virulence when using murine models of acute and chronic gastrointestinal infection. Overall, these results highlight the importance of the type 6 secretion system in the gastrointestinal pathogenesis of Bpm.


Assuntos
Burkholderia pseudomallei , Microbioma Gastrointestinal , Melioidose , Sistemas de Secreção Tipo VI , Fatores de Virulência , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Melioidose/metabolismo , Melioidose/microbiologia , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , RNA-Seq , Solo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Água
9.
PLoS One ; 17(6): e0267682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657963

RESUMO

Evaluating novel compounds for neuroprotective effects in animal models of traumatic brain injury (TBI) is a protracted, labor-intensive and costly effort. However, the present lack of effective treatment options for TBI, despite decades of research, shows the critical need for alternative methods for screening new drug candidates with neuroprotective properties. Because natural products have been a leading source of new therapeutic agents for human diseases, we used an in vitro model of stretch injury to rapidly assess pro-survival effects of three bioactive compounds, two isolated from natural products (clovanemagnolol [CM], vinaxanthone [VX]) and the third, a dietary compound (pterostilbene [PT]) found in blueberries. The stretch injury experiments were not used to validate drug efficacy in a comprehensive manner but used primarily, as proof-of-principle, to demonstrate that the neuroprotective potential of each bioactive agent can be quickly assessed in an immortalized hippocampal cell line in lieu of comprehensive testing in animal models of TBI. To gain mechanistic insights into potential molecular mechanisms of neuroprotective effects, we performed a pathway-specific PCR array analysis of the effects of CM on the rat hippocampus and microRNA sequencing analysis of the effects of VX and PT on cultured hippocampal progenitor neurons. We show that the neuroprotective properties of these natural compounds are associated with altered expression of several genes or microRNAs that have functional roles in neurodegeneration or cell survival. Our approach could help in quickly assessing multiple natural products for neuroprotective properties and expedite the process of new drug discovery for TBI therapeutics.


Assuntos
Produtos Biológicos , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Animais , Produtos Biológicos/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Hipocampo/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos
10.
Nucleic Acids Res ; 50(9): 5313-5334, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35544276

RESUMO

Alternative splicing is critical for development; however, its role in the specification of the three embryonic germ layers is poorly understood. By performing RNA-Seq on human embryonic stem cells (hESCs) and derived definitive endoderm, cardiac mesoderm, and ectoderm cell lineages, we detect distinct alternative splicing programs associated with each lineage. The most prominent splicing program differences are observed between definitive endoderm and cardiac mesoderm. Integrative multi-omics analyses link each program with lineage-enriched RNA binding protein regulators, and further suggest a widespread role for Quaking (QKI) in the specification of cardiac mesoderm. Remarkably, knockout of QKI disrupts the cardiac mesoderm-associated alternative splicing program and formation of myocytes. These changes arise in part through reduced expression of BIN1 splice variants linked to cardiac development. Mechanistically, we find that QKI represses inclusion of exon 7 in BIN1 pre-mRNA via an exonic ACUAA motif, and this is concomitant with intron removal and cleavage from chromatin. Collectively, our results uncover alternative splicing programs associated with the three germ lineages and demonstrate an important role for QKI in the formation of cardiac mesoderm.


Assuntos
Processamento Alternativo , Linhagem da Célula , Camadas Germinativas , Proteínas de Ligação a RNA/metabolismo , Diferenciação Celular , Endoderma , Coração , Humanos , Mesoderma
11.
Cell Rep ; 39(7): 110829, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35550680

RESUMO

We report that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta spike mutation P681R plays a key role in the Alpha-to-Delta variant replacement during the coronavirus disease 2019 (COVID-19) pandemic. Delta SARS-CoV-2 efficiently outcompetes the Alpha variant in human lung epithelial cells and primary human airway tissues. The Delta spike mutation P681R is located at a furin cleavage site that separates the spike 1 (S1) and S2 subunits. Reverting the P681R mutation to wild-type P681 significantly reduces the replication of the Delta variant to a level lower than the Alpha variant. Mechanistically, the Delta P681R mutation enhances the cleavage of the full-length spike to S1 and S2, which could improve cell-surface-mediated virus entry. In contrast, the Alpha spike also has a mutation at the same amino acid (P681H), but the cleavage of the Alpha spike is reduced compared with the Delta spike. Our results suggest P681R as a key mutation in enhancing Delta-variant replication via increased S1/S2 cleavage.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutação/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
12.
NPJ Vaccines ; 7(1): 47, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468973

RESUMO

Respiratory tract vaccination has an advantage of needle-free delivery and induction of mucosal immune response in the portal of SARS-CoV-2 entry. We utilized human parainfluenza virus type 3 vector to generate constructs expressing the full spike (S) protein of SARS-CoV-2, its S1 subunit, or the receptor-binding domain, and tested them in hamsters as single-dose intranasal vaccines. The construct bearing full-length S induced high titers of neutralizing antibodies specific to S protein domains critical to the protein functions. Robust memory T cell responses in the lungs were also induced, which represent an additional barrier to infection and should be less sensitive than the antibody responses to mutations present in SARS-CoV-2 variants. Following SARS-CoV-2 challenge, animals were protected from the disease and detectable viral replication. Vaccination prevented induction of gene pathways associated with inflammation. These results indicate advantages of respiratory vaccination against COVID-19 and inform the design of mucosal SARS-CoV-2 vaccines.

13.
Viruses ; 14(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35336933

RESUMO

The disease yellow fever was prevented by two live attenuated vaccines, strains 17D and French neurotropic vaccine (FNV), derived by serial passage of wild-type (WT) strains Asibi and French Viscerotropic virus (FVV), respectively. Both 17D and FNV displayed decreased genetic diversity and resistance to the antiviral Ribavirin compared to their WT parental strains, which are thought to contribute to their attenuated phenotypes. Subsequent studies found that only a few passages of WT strain FVV in HeLa cells resulted in an attenuated virus. In the current study, the genome sequence of FVV following five passages in HeLa cells (FVV HeLa p5) was determined through Next Generation Sequencing (NGS) with the aim to investigate the molecular basis of viral attenuation. It was found that WT FVV and FVV HeLa p5 virus differed by five amino acid substitutions: E-D155A, E-K331R, E-I412V, NS2A-T105A, and NS4B-V98I. Surprisingly, the genetic diversity and Ribavirin resistance of the FVV HeLa p5 virus were not statistically different to WT parent FVV. These findings suggest that while FVV HeLa p5 is attenuated, this is not dependent on a high-fidelity replication complex, characterized by reduced genetic diversity or increased Ribavirin stability, as seen with FNV and 17D vaccines.


Assuntos
Febre Amarela , Vírus da Febre Amarela , Variação Genética , Células HeLa , Humanos , Ribavirina/farmacologia , Vacinas Atenuadas/genética , Vírus da Febre Amarela/genética
14.
Cell Rep ; 38(10): 110434, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263596

RESUMO

Type I interferons (IFN-I) are essential to establish antiviral innate immunity. Unanchored (or free) polyubiquitin (poly-Ub) has been shown to regulate IFN-I responses. However, few unanchored poly-Ub interactors are known. To identify factors regulated by unanchored poly-Ub in a physiological setting, we developed an approach to isolate unanchored poly-Ub from lung tissue. We identified the RNA helicase DHX16 as a potential pattern recognition receptor (PRR). Silencing of DHX16 in cells and in vivo diminished IFN-I responses against influenza virus. These effects extended to members of other virus families, including Zika and SARS-CoV-2. DHX16-dependent IFN-I production requires RIG-I and unanchored K48-poly-Ub synthesized by the E3-Ub ligase TRIM6. DHX16 recognizes a signal in influenza RNA segments that undergo splicing and requires its RNA helicase motif for direct, high-affinity interactions with specific viral RNAs. Our study establishes DHX16 as a PRR that partners with RIG-I for optimal activation of antiviral immunity requiring unanchored poly-Ub.


Assuntos
Proteína DEAD-box 58 , Interferon Tipo I , RNA Helicases , RNA Viral , Receptores Imunológicos , Infecção por Zika virus , Zika virus , COVID-19 , Proteína DEAD-box 58/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , RNA Helicases/imunologia , Receptores Imunológicos/imunologia , SARS-CoV-2 , Proteínas com Motivo Tripartido , Zika virus/genética , Infecção por Zika virus/imunologia
15.
Nucleic Acids Res ; 50(4): 2270-2286, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35137168

RESUMO

Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development. To address this, we conditionally deleted Rbfox2 in embryonic mouse hearts and found profound defects in cardiac chamber and yolk sac vasculature formation. Importantly, our Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. To determine the molecular drivers of these cardiac defects, we performed RNA-sequencing in Rbfox2 mutant hearts and identified dysregulated alternative splicing (AS) networks that affect cell adhesion to extracellular matrix (ECM) mediated by Rho GTPases. We identified two Rho GTPase cycling genes as targets of RBFOX2. Modulating AS of these two genes using antisense oligos led to cell cycle and cell-ECM adhesion defects. Consistently, Rbfox2 mutant hearts displayed cell cycle defects and inability to undergo endocardial-mesenchymal transition, processes dependent on cell-ECM adhesion and that are seen in HLHS. Overall, our work not only revealed that loss of Rbfox2 leads to heart development defects resembling HLHS, but also identified RBFOX2-regulated AS networks that influence cell-ECM communication vital for heart development.


Assuntos
Processamento Alternativo , Coração/embriologia , Fatores de Processamento de RNA/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Organogênese , RNA/metabolismo , Fatores de Processamento de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Nature ; 602(7896): 294-299, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34818667

RESUMO

The B.1.1.7 variant (also known as Alpha) of SARS-CoV-2, the cause of the COVID-19 pandemic, emerged in the UK in the summer of 2020. The prevalence of this variant increased rapidly owing to an increase in infection and/or transmission efficiency1. The Alpha variant contains 19 nonsynonymous mutations across its viral genome, including 8 substitutions or deletions in the spike protein that interacts with cellular receptors to mediate infection and tropism. Here, using a reverse genetics approach, we show that of the 8 individual spike protein substitutions, only N501Y resulted in consistent fitness gains for replication in the upper airway in a hamster model as well as in primary human airway epithelial cells. The N501Y substitution recapitulated the enhanced viral transmission phenotype of the eight mutations in the Alpha spike protein, suggesting that it is a major determinant of the increased transmission of the Alpha variant. Mechanistically, the N501Y substitution increased the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil, South Africa and elsewhere2,3, our results indicate that N501Y substitution is an adaptive spike mutation of major concern.


Assuntos
Substituição de Aminoácidos , COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Ligação Competitiva , Brônquios/citologia , Células Cultivadas , Cricetinae , Humanos , Masculino , Mesocricetus , Modelos Moleculares , Mutação , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral
17.
Elife ; 102021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581669

RESUMO

High-throughput genomics of SARS-CoV-2 is essential to characterize virus evolution and to identify adaptations that affect pathogenicity or transmission. While single-nucleotide variations (SNVs) are commonly considered as driving virus adaption, RNA recombination events that delete or insert nucleic acid sequences are also critical. Whole genome targeting sequencing of SARS-CoV-2 is typically achieved using pairs of primers to generate cDNA amplicons suitable for next-generation sequencing (NGS). However, paired-primer approaches impose constraints on where primers can be designed, how many amplicons are synthesized and requires multiple PCR reactions with non-overlapping primer pools. This imparts sensitivity to underlying SNVs and fails to resolve RNA recombination junctions that are not flanked by primer pairs. To address these limitations, we have designed an approach called 'Tiled-ClickSeq', which uses hundreds of tiled-primers spaced evenly along the virus genome in a single reverse-transcription reaction. The other end of the cDNA amplicon is generated by azido-nucleotides that stochastically terminate cDNA synthesis, removing the need for a paired-primer. A sequencing adaptor containing a Unique Molecular Identifier (UMI) is appended to the cDNA fragment using click-chemistry and a PCR reaction generates a final NGS library. Tiled-ClickSeq provides complete genome coverage, including the 5'UTR, at high depth and specificity to the virus on both Illumina and Nanopore NGS platforms. Here, we analyze multiple SARS-CoV-2 isolates and clinical samples to simultaneously characterize minority variants, sub-genomic mRNAs (sgmRNAs), structural variants (SVs) and D-RNAs. Tiled-ClickSeq therefore provides a convenient and robust platform for SARS-CoV-2 genomics that captures the full range of RNA species in a single, simple assay.


Assuntos
Sequência de Bases , Coronavirus/genética , Genoma Viral , RNA , SARS-CoV-2/genética , COVID-19/virologia , DNA Complementar , Biblioteca Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nanoporos , Reação em Cadeia da Polimerase , RNA Mensageiro , RNA Viral/genética , Recombinação Genética , Sequenciamento Completo do Genoma
18.
NPJ Vaccines ; 6(1): 112, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475404

RESUMO

Japanese encephalitis virus (JEV) is the etiological agent of Japanese encephalitis (JE). The most commonly used vaccine used to prevent JE is the live-attenuated strain SA14-14-2, which was generated by serial passage of the wild-type (WT) JEV strain SA14. Two other vaccine candidates, SA14-5-3 and SA14-2-8 were derived from SA14. Both were shown to be attenuated but lacked sufficient immunogenicity to be considered effective vaccines. To better contrast the SA14-14-2 vaccine with its less-immunogenic counterparts, genetic diversity, ribavirin sensitivity, mouse virulence and mouse immunogenicity of the three vaccines were investigated. Next generation sequencing demonstrated that SA14-14-2 was significantly more diverse than both SA14-5-3 and SA14-2-8, and was slightly less diverse than WT SA14. Notably, WT SA14 had unpredictable levels of diversity across its genome whereas SA14-14-2 is highly diverse, but genetic diversity is not random, rather the virus only tolerates variability at certain residues. Using Ribavirin sensitivity in vitro, it was found that SA14-14-2 has a lower fidelity replication complex compared to SA14-5-3 and SA14-2-8. Mouse virulence studies showed that SA14-2-8 was the most virulent of the three vaccine strains while SA14-14-2 had the most favorable combination of safety (virulence) and immunogenicity for all vaccines tested. SA14-14-2 contains genetic diversity and sensitivity to the antiviral Ribavirin similar to WT parent SA14, and this genetic diversity likely explains the (1) differences in genomic sequences reported for SA14-14-2 and (2) the encoding of major attenuation determinants by the viral E protein.

19.
Viruses ; 13(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34372589

RESUMO

The yellow fever virus vaccine, 17D, was derived through the serial passage of the wild-type (WT) strain Asibi virus in mouse and chicken tissue. Since its derivation, the mechanism of attenuation of 17D virus has been investigated using three 17D substrains and WT Asibi virus. Although all three substrains of 17D have been sequenced, only one isolate of Asibi has been examined genetically and all interpretation of attenuation is based on this one isolate. Here, we sequenced the genome of Asibi virus from three different laboratories and show that the WT strain is genetically homogenous at the amino acids that distinguish Asibi from 17D vaccine virus.


Assuntos
Genoma Viral , Proteínas do Envelope Viral/genética , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/genética , Antígenos Virais/imunologia , Variação Genética , Vacinas Atenuadas , Proteínas do Envelope Viral/imunologia , Sequenciamento Completo do Genoma , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/imunologia
20.
bioRxiv ; 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34462752

RESUMO

SARS-CoV-2 Delta variant has rapidly replaced the Alpha variant around the world. The mechanism that drives this global replacement has not been defined. Here we report that Delta spike mutation P681R plays a key role in the Alpha-to-Delta variant replacement. In a replication competition assay, Delta SARS-CoV-2 efficiently outcompeted the Alpha variant in human lung epithelial cells and primary human airway tissues. Delta SARS-CoV-2 bearing the Alpha-spike glycoprotein replicated less efficiently than the wild-type Delta variant, suggesting the importance of Delta spike in enhancing viral replication. The Delta spike has accumulated mutation P681R located at a furin cleavage site that separates the spike 1 (S1) and S2 subunits. Reverting the P681R mutation to wild-type P681 significantly reduced the replication of Delta variant, to a level lower than the Alpha variant. Mechanistically, the Delta P681R mutation enhanced the cleavage of the full-length spike to S1 and S2, leading to increased infection via cell surface entry. In contrast, the Alpha spike also has a mutation at the same amino acid (P681H), but the spike cleavage from purified Alpha virions was reduced compared to the Delta spike. Collectively, our results indicate P681R as a key mutation in enhancing Delta variant replication via increased S1/S2 cleavage. Spike mutations that potentially affect furin cleavage efficiency must be closely monitored for future variant surveillance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...