Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Front Oncol ; 14: 1377373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646441

RESUMO

Introduction: The progression of solid cancers is manifested at the systemic level as molecular changes in the metabolome of body fluids, an emerging source of cancer biomarkers. Methods: We analyzed quantitatively the serum metabolite profile using high-resolution mass spectrometry. Metabolic profiles were compared between breast cancer patients (n=112) and two groups of healthy women (from Poland and Norway; n=95 and n=112, respectively) with similar age distributions. Results: Despite differences between both cohorts of controls, a set of 43 metabolites and lipids uniformly discriminated against breast cancer patients and healthy women. Moreover, smaller groups of female patients with other types of solid cancers (colorectal, head and neck, and lung cancers) were analyzed, which revealed a set of 42 metabolites and lipids that uniformly differentiated all three cancer types from both cohorts of healthy women. A common part of both sets, which could be called a multi-cancer signature, contained 23 compounds, which included reduced levels of a few amino acids (alanine, aspartate, glutamine, histidine, phenylalanine, and leucine/isoleucine), lysophosphatidylcholines (exemplified by LPC(18:0)), and diglycerides. Interestingly, a reduced concentration of the most abundant cholesteryl ester (CE(18:2)) typical for other cancers was the least significant in the serum of breast cancer patients. Components present in a multi-cancer signature enabled the establishment of a well-performing breast cancer classifier, which predicted cancer with a very high precision in independent groups of women (AUC>0.95). Discussion: In conclusion, metabolites critical for discriminating breast cancer patients from controls included components of hypothetical multi-cancer signature, which indicated wider potential applicability of a general serum metabolome cancer biomarker.

2.
Metabolites ; 14(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38668340

RESUMO

The study aimed to investigate late radiation-induced changes in the histology, ultrastructure, and activity of lysosomal enzymes in mouse liver exposed to ionizing radiation. The experiment was conducted on C57BL/6J male mice whose distal part of the liver was exposed occasionally to single doses of radiation (6 MV photons) during targeted heart irradiation; estimated doses delivered to analyzed tissue were 0.025 Gy, 0.25 Gy, 1 Gy, and 2 Gy. Tissues were collected 40 weeks after irradiation. We have observed that late effects of radiation have an adaptive nature and their intensity was dose-dependent. Morphological changes in hepatocytes included an increased number of primary lysosomes and autophagic vacuoles, which were visible in tissues irradiated with 0.25 Gy and higher doses. On the other hand, a significant increase in the activity of lysosomal hydrolases was observed only in tissues exposed to 2 Gy. The etiology of these changes may be multifactorial and result, among others, from unintentional irradiation of the distal part of the liver and/or functional interaction of the liver with an irradiated heart. In conclusion, we confirmed the presence of late dose-dependent ultrastructural and biochemical changes in mouse hepatocytes after liver irradiation in vivo.

3.
Front Oncol ; 14: 1323961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410100

RESUMO

Background: Neoadjuvant radiotherapy (neo-RT) is widely used in locally advanced rectal cancer (LARC) as a component of radical treatment. Despite the advantages of neo-RT, which typically improves outcomes in LARC patients, the lack of reliable biomarkers that predict response and monitor the efficacy of therapy, can result in the application of unnecessary aggressive therapy affecting patients' quality of life. Hence, the search for molecular biomarkers for assessing the radio responsiveness of this cancer represents a relevant issue. Methods: Here, we combined proteomic and metabolomic approaches to identify molecular signatures, which could discriminate LARC tumors with good and poor responses to neo-RT. Results: The integration of data on differentially accumulated proteins and metabolites made it possible to identify disrupted metabolic pathways and signaling processes connected with response to irradiation, including ketone bodies synthesis and degradation, purine metabolism, energy metabolism, degradation of fatty acid, amino acid metabolism, and focal adhesion. Moreover, we proposed multi-component panels of proteins and metabolites which could serve as a solid base to develop biomarkers for monitoring and predicting the efficacy of preoperative RT in rectal cancer patients. Conclusion: We proved that an integrated multi-omic approach presents a valid look at the analysis of the global response to cancer treatment from the perspective of metabolomic reprogramming.

4.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256152

RESUMO

Cancer and ionizing radiation exposure are associated with inflammation. To identify a set of radiation-specific signatures of inflammation-associated genes in the blood of partially exposed radiotherapy patients, differential expression of 249 inflammatory genes was analyzed in blood samples from cancer patients and healthy individuals. The gene expression analysis on a cohort of 63 cancer patients (endometrial, head and neck, and prostate cancer) before and during radiotherapy (24 h, 48 h, ~1 week, ~4-8 weeks, and 1 month after the last fraction) identified 31 genes and 15 up- and 16 down-regulated genes. Transcription variability under normal conditions was determined using blood drawn on three separate occasions from four healthy donors. No difference in inflammatory expression between healthy donors and cancer patients could be detected prior to radiotherapy. Remarkably, repeated sampling of healthy donors revealed an individual endogenous inflammatory signature. Next, the potential confounding effect of concomitant inflammation was studied in the blood of seven healthy donors taken before and 24 h after a flu vaccine or ex vivo LPS (lipopolysaccharide) treatment; flu vaccination was not detected at the transcriptional level and LPS did not have any effect on the radiation-induced signature identified. Finally, we identified a radiation-specific signature of 31 genes in the blood of radiotherapy patients that were common for all cancers, regardless of the immune status of patients. Confirmation via MQRT-PCR was obtained for BCL6, MYD88, MYC, IL7, CCR4 and CCR7. This study offers the foundation for future research on biomarkers of radiation exposure, radiation sensitivity, and radiation toxicity for personalized radiotherapy treatment.


Assuntos
Neoplasias da Próstata , Exposição à Radiação , Radioterapia (Especialidade) , Masculino , Humanos , Lipopolissacarídeos , Inflamação/genética
5.
J Mol Diagn ; 26(1): 37-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865291

RESUMO

Several panels of circulating miRNAs have been reported as potential biomarkers of early lung cancer, yet the overlap of components between different panels is limited, and the universality of proposed biomarkers has been minimal across proposed panels. To assess the stability of the diagnostic potential of plasma miRNA signature of early lung cancer among different cohorts, a panel of 24 miRNAs tested in the frame of one lung cancer screening study (MOLTEST-2013, Poland) was validated with material collected in the frame of two other screening studies (MOLTEST-BIS, Poland; and SMAC, Italy) using the same standardized analytical platform (the miRCURY LNA miRNA PCR assay). On analysis of selected miRNAs, two associated with lung cancer development, miR-122 and miR-21, repetitively differentiated healthy participants from individuals with lung cancer. Additionally, miR-144 differentiated controls from cases specifically in subcohorts with adenocarcinoma. Other tested miRNAs did not overlap in the three cohorts. Classification models based on neither a single miRNA nor multicomponent miRNA panels (24-mer and 7-mer) showed classification performance sufficient for a standalone diagnostic biomarker (AUC, 75%, 71%, and 53% in MOLTEST-2013, SMAC, and MOLTEST-BIS, respectively, in the 7-mer model). The performance of classification in the MOLTEST-BIS cohort with the lowest contribution of adenocarcinomas was increased when only this cancer type was considered (AUC, 60% in 7-mer model).


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Detecção Precoce de Câncer , Biomarcadores , Adenocarcinoma/genética , Biomarcadores Tumorais/genética
6.
Metabolites ; 13(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755280

RESUMO

Response to radiotherapy (RT) includes tissue toxicity, which may involve inflammatory reactions. We aimed to compare changes in metabolic patterns induced at the systemic level by radiation and inflammation itself. Patients treated with RT due to head and neck cancer and patients with inflammation-related diseases located in the corresponding anatomical regions were selected. PubMed and Web of Science databases were searched from 1 January 2000 to 10 August 2023. Twenty-five relevant studies where serum/plasma metabolic profiles were analyzed using different metabolomics approaches were identified. The studies showed different metabolic patterns of acute and chronic inflammatory diseases, yet changes in metabolites linked to the urea cycle and metabolism of arginine and proline were common features of both conditions. Although the reviewed reports showed only a few specific metabolites common for early RT response and inflammatory diseases, partly due to differences in metabolomics approaches, several common metabolic pathways linked to metabolites affected by radiation and inflammation were revealed. They included pathways involved in energy metabolism (e.g., metabolism of ketone bodies, mitochondrial electron transport chain, Warburg effect, citric acid cycle, urea cycle) and metabolism of certain amino acids (Arg, Pro, Gly, Ser, Met, Ala, Glu) and lipids (glycerolipids, branched-chain fatty acids). However, metabolites common for RT and inflammation-related diseases could show opposite patterns of changes. This could be exemplified by the lysophosphatidylcholine to phosphatidylcholine ratio (LPC/PC) that increased during chronic inflammation and decreased during the early phase of response to RT. One should be aware of dynamic metabolic changes during different phases of response to radiation, which involve increased levels of LPC in later phases. Hence, metabolomics studies that would address molecular features of both types of biological responses using comparable analytical and clinical approaches are needed to unravel the complexities of these phenomena, ultimately contributing to a deeper understanding of their impact on biological systems.

7.
Proteomics ; : e2300180, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713108

RESUMO

Extracellular vesicles (EVs), the key players in inter-cellular communication, are produced by all cell types and are present in all body fluids. Analysis of the proteome content is an important approach in structural and functional studies of these vesicles. EVs circulating in human plasma are heterogeneous in size, cellular origin, and functions. This heterogeneity and the potential presence of contamination with plasma components such as lipoprotein particles and soluble plasma proteins represent a challenge in profiling the proteome of EV subsets by mass spectrometry. An immunocapture strategy prior to mass spectrometry may be used to isolate a homogeneous subpopulation of small EVs (sEV) with a specific endocytic origin from plasma or other biofluids. Immunocapture selectively separates EV subpopulations in biofluids based on the presence of a unique protein carried on the vesicle surface. The advantages and disadvantages of EV immune capture as a preparative step for mass spectrometry are discussed.

8.
Front Oncol ; 13: 1116806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007110

RESUMO

Background: The serum metabolome is a potential source of molecular biomarkers associated with the risk of breast cancer. Here we aimed to analyze metabolites present in pre-diagnostic serum samples collected from healthy women participating in the Norwegian Trøndelag Health Study (HUNT2 study) for whom long-term information about developing breast cancer was available. Methods: Women participating in the HUNT2 study who developed breast cancer within a 15-year follow-up period (BC cases) and age-matched women who stayed breast cancer-free were selected (n=453 case-control pairs). Using a high-resolution mass spectrometry approach 284 compounds were quantitatively analyzed, including 30 amino acids and biogenic amines, hexoses, and 253 lipids (acylcarnitines, glycerides, phosphatidylcholines, sphingolipids, and cholesteryl esters). Results: Age was a major confounding factor responsible for a large heterogeneity in the dataset, hence age-defined subgroups were analyzed separately. The largest number of metabolites whose serum levels differentiated BC cases and controls (82 compounds) were observed in the subgroup of younger women (<45 years old). Noteworthy, increased levels of glycerides, phosphatidylcholines, and sphingolipids were associated with reduced risk of cancer in younger and middle-aged women (≤64 years old). On the other hand, increased levels of serum lipids were associated with an enhanced risk of breast cancer in older women (>64 years old). Moreover, several metabolites could be detected whose serum levels were different between BC cases diagnosed earlier (<5 years) and later (>10 years) after sample collecting, yet these compounds were also correlated with the age of participants. Current results were coherent with the results of the NMR-based metabolomics study performed in the cohort of HUNT2 participants, where increased serum levels of VLDL subfractions were associated with reduced risk of breast cancer in premenopausal women. Conclusions: Changes in metabolite levels detected in pre-diagnostic serum samples, which reflected an impaired lipid and amino acid metabolism, were associated with long-term risk of breast cancer in an age-dependent manner.

9.
Biomolecules ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254644

RESUMO

Radiomics is an emerging approach to support the diagnosis of pulmonary nodules detected via low-dose computed tomography lung cancer screening. Serum metabolome is a promising source of auxiliary biomarkers that could help enhance the precision of lung cancer diagnosis in CT-based screening. Thus, we aimed to verify whether the combination of these two techniques, which provides local/morphological and systemic/molecular features of disease at the same time, increases the performance of lung cancer classification models. The collected cohort consists of 1086 patients with radiomic and 246 patients with serum metabolomic evaluations. Different machine learning techniques, i.e., random forest and logistic regression were applied for each omics. Next, model predictions were combined with various integration methods to create a final model. The best single omics models were characterized by an AUC of 83% in radiomics and 60% in serum metabolomics. The model integration only slightly increased the performance of the combined model (AUC equal to 85%), which was not statistically significant. We concluded that radiomics itself has a good ability to discriminate lung cancer from benign lesions. However, additional research is needed to test whether its combination with other molecular assessments would further improve the diagnosis of screening-detected lung nodules.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Radiômica , Tomografia Computadorizada por Raios X , Computadores
10.
J Extracell Vesicles ; 11(12): e12294, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36537293

RESUMO

Transforming growth factor ß (TGFß) is a major component of tumor-derived small extracellular vesicles (TEX) in cancer patients. Mechanisms utilized by TGFß+ TEX to promote tumor growth and pro-tumor activities in the tumor microenvironment (TME) are largely unknown. TEX produced by head and neck squamous cell carcinoma (HNSCC) cell lines carried TGFß and angiogenesis-promoting proteins. TGFß+ TEX stimulated macrophage chemotaxis without a notable M1/M2 phenotype shift and reprogrammed primary human macrophages to a pro-angiogenic phenotype characterized by the upregulation of pro-angiogenic factors and functions. In a murine basement membrane extract plug model, TGFß+ TEX promoted macrophage infiltration and vascularization (p < 0.001), which was blocked by using the TGFß ligand trap mRER (p < 0.001). TGFß+ TEX injected into mice undergoing the 4-nitroquinoline-1-oxide (4-NQO)-driven oral carcinogenesis promoted tumor angiogenesis (p < 0.05), infiltration of M2-like macrophages in the TME (p < 0.05) and ultimately tumor progression (p < 0.05). Inhibition of TGFß signaling in TEX with mRER ameliorated these pro-tumor activities. Silencing of TGFß emerges as a critical step in suppressing pro-angiogenic functions of TEX in HNSCC.


Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator de Crescimento Transformador beta/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Neovascularização Patológica/genética , Fenótipo , Microambiente Tumoral
11.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080226

RESUMO

Different aspects of intra-tumor heterogeneity (ITH), which are associated with the development of cancer and its response to treatment, have postulated prognostic value. Here we searched for potential association between phenotypic ITH analyzed by mass spectrometry imaging (MSI) and prognosis of head and neck cancer. The study involved tissue specimens resected from 77 patients with locally advanced oral squamous cell carcinoma, including 37 patients where matched samples of primary tumor and synchronous lymph node metastases were analyzed. A 3-year follow-up was available for all patients which enabled their separation into two groups: with no evidence of disease (NED, n = 41) and with progressive disease (PD, n = 36). After on-tissue trypsin digestion, peptide maps of all cancer regions were segmented using an unsupervised approach to reveal their intrinsic heterogeneity. We found that intra-tumor similarity of spectra was higher in the PD group and diversity of clusters identified during image segmentation was higher in the NED group, which indicated a higher level of ITH in patients with more favorable outcomes. Signature of molecular components that correlated with long-term outcomes could be associated with proteins involved in the immune functions. Furthermore, a positive correlation between ITH and histopathological lymphocytic host response was observed. Hence, we proposed that a higher level of ITH revealed by MSI in cancers with a better prognosis could reflect the presence of heterotypic components of tumor microenvironment such as infiltrating immune cells enhancing the response to the treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/patologia , Humanos , Metástase Linfática , Espectrometria de Massas , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Prognóstico , Microambiente Tumoral
12.
Cells ; 11(12)2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35741093

RESUMO

Exosomes that are released by T cells are key messengers involved in immune regulation. However, the molecular profiling of these vesicles, which is necessary for understanding their functions, requires their isolation from a very heterogeneous mixture of extracellular vesicles that are present in the human plasma. It has been shown that exosomes that are produced by T cells could be isolated from plasma by immune capture using antibodies that target the CD3 antigen, which is a key component of the TCR complex that is present in all T lymphocytes. Here, we demonstrate that CD3(+) exosomes that are isolated from plasma can be used for high-throughput molecular profiling using proteomics and metabolomics tools. This profiling allowed for the identification of proteins and metabolites that differentiated the CD3(+) from the CD3(-) exosome fractions that were present in the plasma of healthy donors. Importantly, the proteins and metabolites that accumulated in the CD3(+) vesicles reflected the known molecular features of T lymphocytes. Hence, CD3(+) exosomes that are isolated from human plasma by immune capture could serve as a "T cell biopsy".


Assuntos
Exossomos , Complexo CD3/metabolismo , Exossomos/metabolismo , Humanos , Metabolômica , Proteínas/metabolismo , Proteômica , Linfócitos T
13.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35456987

RESUMO

Exosomes released by irradiated cells mediate the radiation-induced bystander effect, which is manifested by DNA breaks detected in recipient cells; yet, the specific mechanism responsible for the generation of chromosome lesions remains unclear. In this study, naive FaDu head and neck cancer cells were stimulated with exosomes released by irradiated (a single 2 Gy dose) or mock-irradiated cells. Maximum accumulation of gamma H2A.X foci, a marker of DNA breaks, was detected after one hour of stimulation with exosomes from irradiated donors, the level of which was comparable to the one observed in directly irradiated cells (a weaker wave of the gamma H2A.X foci accumulation was also noted after 23 h of stimulation). Exosomes from irradiated cells, but not from control ones, activated two stress-induced protein kinases: ATM and ATR. Noteworthy is that while direct irradiation activated only ATM, both ATM and ATR were activated by two factors known to induce the replication stress: hydroxyurea and camptothecin (with subsequent phosphorylation of gamma H2A.X). One hour of stimulation with exosomes from irradiated cells suppressed DNA synthesis in recipient cells and resulted in the subsequent nuclear accumulation of RNA:DNA hybrids, which is an indicator of impaired replication. Interestingly, the abovementioned effects were observed before a substantial internalization of exosomes, which may suggest a receptor-mediated mechanism. It was observed that after one hour of stimulation with exosomes from irradiated donors, phosphorylation of several nuclear proteins, including replication factors and regulators of heterochromatin remodeling as well as components of multiple intracellular signaling pathways increased. Hence, we concluded that the bystander effect mediated by exosomes released from irradiated cells involves the replication stress in recipient cells.


Assuntos
Efeito Espectador , Exossomos , Efeito Espectador/efeitos da radiação , Linhagem Celular Tumoral , Exossomos/metabolismo , Raios gama , Transdução de Sinais/efeitos da radiação
14.
Acta Biochim Pol ; 69(1): 205-210, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130377

RESUMO

DNA double-strand breaks induced by ionizing radiation can activate the atypical NF-κB pathway via ATM-mediated phosphorylation of NEMO/IKKγ. We aimed to determine whether the status of p53 influenced the activation of this particular NF-κB pathway. The NF-κB signaling was activated either by irradiation with a single 8 Gy dose or by TNFα cytokine in p53-proficient and p53-deficient variants of HCT116, RKO, and U2-OS human cancer cell lines. To assess pathway activation the kinetics of phosphorylation (Ser32) and proteolytic degradation of IκBα inhibitor and phosphorylation (Ser536) of RelA(p65) NF-κB subunit were analyzed. Though activation of the radiation-induced atypical pathway was delayed and weakened when compared to the cytokine-induced canonical pathway, no significant differences were noted between p53-proficient and p53-deficient variants, which indicated that activation of both NF-κB pathways was not affected by the p53 status. In marked contrast, the presence of p53 significantly affected downstream effects of NF-κB activation, i.e. transcription of NF-κB-dependent genes. However, different patterns of such interference were observed, which indicated gene-specific and cell-specific mechanisms of interactions between NF-κB and p53 at the transcription regulation level.


Assuntos
NF-kappa B/metabolismo , NF-kappa B/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Linhagem Celular Tumoral , Células HCT116 , Humanos , Quinase I-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/genética , Fosforilação , Radiação Ionizante , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética
15.
Cancers (Basel) ; 14(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35205741

RESUMO

Identification of biomarkers that could be used for the prediction of the response to neoadjuvant radiotherapy (neo-RT) in locally advanced rectal cancer remains a challenge addressed by different experimental approaches. Exosomes and other classes of extracellular vesicles circulating in patients' blood represent a novel type of liquid biopsy and a source of cancer biomarkers. Here, we used a combined proteomic and metabolomic approach based on mass spectrometry techniques for studying the molecular components of exosomes isolated from the serum of rectal cancer patients with different responses to neo-RT. This allowed revealing several proteins and metabolites associated with common pathways relevant for the response of rectal cancer patients to neo-RT, including immune system response, complement activation cascade, platelet functions, metabolism of lipids, metabolism of glucose, and cancer-related signaling pathways. Moreover, the composition of serum-derived exosomes and a whole serum was analyzed in parallel to compare the biomarker potential of both specimens. Among proteins that the most properly discriminated good and poor responders were GPLD1 (AUC = 0.85, accuracy of 74%) identified in plasma as well as C8G (AUC = 0.91, accuracy 81%), SERPINF2 (AUC = 0.91, accuracy 79%) and CFHR3 (AUC = 0.90, accuracy 81%) identified in exosomes. We found that the proteome component of serum-derived exosomes has the highest capacity to discriminate samples of patients with different responses to neo-RT when compared to the whole plasma proteome and metabolome. We concluded that the molecular components of exosomes are associated with the response of rectal cancer patients to neo-RT and could be used for the prediction of such response.

16.
Cancers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34503159

RESUMO

Intra-tumor heterogeneity (ITH) results from the coexistence of genetically distinct cancer cell (sub)populations, their phenotypic plasticity, and the presence of heterotypic components of the tumor microenvironment (TME). Here we addressed the potential association between phenotypic ITH revealed by mass spectrometry imaging (MSI) and the prognosis of breast cancer. Tissue specimens resected from 59 patients treated radically due to the locally advanced HER2-positive invasive ductal carcinoma were included in the study. After the on-tissue trypsin digestion of cellular proteins, peptide maps of all cancer regions (about 380,000 spectra in total) were segmented by an unsupervised approach to reveal their intrinsic heterogeneity. A high degree of similarity between spectra was observed, which indicated the relative homogeneity of cancer regions. However, when the number and diversity of the detected clusters of spectra were analyzed, differences between patient groups were observed. It is noteworthy that a higher degree of heterogeneity was found in tumors from patients who remained disease-free during a 5-year follow-up (n = 38) compared to tumors from patients with progressive disease (distant metastases detected during the follow-up, n = 21). Interestingly, such differences were not observed between patients with a different status of regional lymph nodes, cancer grade, or expression of estrogen receptor at the time of the primary treatment. Subsequently, spectral components with different abundance in cancer regions were detected in patients with different outcomes, and their hypothetical identity was established by assignment to measured masses of tryptic peptides identified in corresponding tissue lysates. Such differentiating components were associated with proteins involved in immune regulation and hemostasis. Further, a positive correlation between the level of tumor-infiltrating lymphocytes and heterogeneity revealed by MSI was observed. We postulate that a higher heterogeneity of tumors with a better prognosis could reflect the presence of heterotypic components including infiltrating immune cells, that facilitated the response to treatment.

17.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298629

RESUMO

Molecular components of exosomes and other classes of small extracellular vesicles (sEV) present in human biofluids are potential biomarkers with possible applicability in the early detection of lung cancer. Here, we compared the lipid profiles of serum-derived sEV from three groups of lung cancer screening participants: individuals without pulmonary alterations, individuals with benign lung nodules, and patients with screening-detected lung cancer (81 individuals in each group). Extracellular vesicles and particles were purified from serum by size-exclusion chromatography, and a fraction enriched in sEV and depleted of low-density lipoproteins (LDLs) was selected (similar sized vesicles was observed in all groups: 70-100 nm). The targeted mass-spectrometry-based approach enabled the detection of 352 lipids, including 201 compounds used in quantitative analyses. A few compounds, exemplified by Cer(42:1), i.e., a ceramide whose increased plasma/serum level was reported in different pathological conditions, were upregulated in vesicles from cancer patients. On the other hand, the contribution of phosphatidylcholines with poly-unsaturated acyl chains was reduced in vesicles from lung cancer patients. Cancer-related features detected in serum-derived sEV were different than those of the corresponding whole serum. A high heterogeneity of lipid profiles of sEV was observed, which markedly impaired the performance of classification models based on specific compounds (the three-state classifiers showed an average AUC = 0.65 and 0.58 in the training and test subsets, respectively).

18.
Cancers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072693

RESUMO

Serum metabolome is a promising source of molecular biomarkers that could support early detection of lung cancer in screening programs based on low-dose computed tomography. Several panels of metabolites that differentiate lung cancer patients and healthy individuals were reported, yet none of them were validated in the population at high-risk of developing cancer. Here we analyzed serum metabolome profiles in participants of two lung cancer screening studies: MOLTEST-BIS (Poland, n = 369) and SMAC-1 (Italy, n = 93). Three groups of screening participants were included: lung cancer patients, individuals with benign pulmonary nodules, and those without any lung alterations. Concentrations of about 400 metabolites (lipids, amino acids, and biogenic amines) were measured by a mass spectrometry-based approach. We observed a reduced level of lipids, in particular cholesteryl esters, in sera of cancer patients from both studies. Despite several specific compounds showing significant differences between cancer patients and healthy controls within each study, only a few cancer-related features were common when both cohorts were compared, which included a reduced concentration of lysophosphatidylcholine LPC (18:0). Moreover, serum metabolome profiles in both noncancer groups were similar, and differences between cancer patients and both groups of healthy participants were comparable. Large heterogeneity in levels of specific metabolites was observed, both within and between cohorts, which markedly impaired the accuracy of classification models: The overall AUC values of three-state classifiers were 0.60 and 0.51 for the test (MOLTEST) and validation (SMAC) cohorts, respectively. Therefore, a hypothetical metabolite-based biomarker for early detection of lung cancer would require adjustment to lifestyle-related confounding factors that putatively affect the composition of serum metabolome.

19.
Strahlenther Onkol ; 197(10): 926-934, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34185114

RESUMO

BACKGROUND: Conformal radiotherapy is a primary treatment in head and neck cancer, which putative adverse effects depend on relatively low doses of radiation delivered to increased volumes of normal tissues. Systemic effects of such treatment include radiation-induced changes in serum lipid profile, yet dose- and volume-dependence of these changes remain to be established. METHODS: Here we analyzed levels of choline-containing phospholipids in serum samples collected consecutively during the radiotherapy used as the only treatment modality. The liquid chromatography-mass spectrometry (LC-MS) approach applied in the study enabled the detection and quantitation of 151 phospholipids, including (lyso)phosphatidylcholines and sphingomyelins. RESULTS: No statistically significant differences were found in the pretreatment samples from patients with different locations and stages of cancer. To compensate for potential differences between schemes of radiotherapy, the biologically effective doses were calculated and used in the search of correlations with specific lipid levels. We found that the levels of several phospholipids depended on the maximum dose delivered to the gross tumor volume and total radiation energy absorbed by the patient's body. Increased doses correlated with increased levels of sphingomyelins and reduced levels of phosphatidylcholines. Furthermore, we observed several phospholipids whose serum levels correlated with the degree of acute radiation toxicity. CONCLUSION: Noteworthy, serum phospholipid levels were associated mainly with volumes of normal tissues irradiated with relatively low doses (i.e., total accumulated dose 20 Gy), which indicated the importance of such effects on the systemic response of the patient's organism to intensity-modulated radiotherapy (IMRT).


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Colina , Humanos , Fosfolipídeos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos
20.
Cancers (Basel) ; 13(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803617

RESUMO

Early detection of lung cancer in screening programs is a rational way to reduce mortality associated with this malignancy. Low-dose computed tomography, a diagnostic tool used in lung cancer screening, generates a relatively large number of false-positive results, and its complementation with molecular biomarkers would greatly improve the effectiveness of such programs. Several biomarkers of lung cancer based on different components of blood, including miRNA signatures, were proposed. However, only a few of them have been positively validated in the context of early cancer detection yet, which imposes a constant need for new biomarker candidates. An emerging source of cancer biomarkers are exosomes and other types of extracellular vesicles circulating in body fluids. Hence, different molecular components of serum/plasma-derived exosomes were tested and showed different levels in lung cancer patients and healthy individuals. Several studies focused on the miRNA component of these vesicles. Proposed signatures of exosome miRNA had promising diagnostic value, though none of them have yet been clinically validated. These signatures involved a few dozen miRNA species overall, including a few species that recurred in different signatures. It is worth noting that all these miRNA species have cancer-related functions and have been associated with lung cancer progression. Moreover, a few of them, including known oncomirs miR-17, miR-19, miR-21, and miR-221, appeared in multiple miRNA signatures of lung cancer based on both the whole serum/plasma and serum/plasma-derived exosomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...