Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Isr J Chem ; 63(5-6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38765792

RESUMO

Staphylococcus aureus is a ubiquitous bacterium that has become a major threat to human health due to its extensive toxin production and tremendous capacity for antibiotic resistance (e.g., MRSA "superbug" infections). Amid a worsening antibiotic resistance crisis, new strategies to combat this deadly microbe that remove the selective pressure of traditional approaches are in high demand. S. aureus utilizes an accessory gene regulator (agr) quorum sensing network to monitor its local cellular population and trigger a devastating communal attack, like an invading horde, once a threshold cell density has been reached. The role of the agr system in a range of disease types is still being unraveled. Herein, we discuss the present-day biochemical understanding of agr along with unresolved details, describe its connection to the progression of infection, and review how chemical strategies have been implemented to study and intercept this signaling pathway. This research is illuminating the potential of agr as an anti-virulence target in S. aureus and should inform the study of similar, yet less studied, agr systems in related bacterial pathogens.

2.
RNA Biol ; 19(1): 1059-1076, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093908

RESUMO

Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more 'digital' gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.


Assuntos
Aptâmeros de Nucleotídeos , Riboswitch , Aptâmeros de Nucleotídeos/química , Ligantes , RNA , Riboswitch/genética
3.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619097

RESUMO

The OLE (ornate, large, and extremophilic) RNA class is one of the most complex and well-conserved bacterial noncoding RNAs known to exist. This RNA is known to be important for bacterial responses to stress caused by short-chain alcohols, cold, and elevated Mg2+ concentrations. These biological functions have been shown to require the formation of a ribonucleoprotein (RNP) complex including at least two protein partners: OLE-associated protein A (OapA) and OLE-associated protein B (OapB). OapB directly binds OLE RNA with high-affinity and specificity and is believed to assist in assembling the functional OLE RNP complex. To provide the atomic details of OapB-OLE RNA interaction and to potentially reveal previously uncharacterized protein-RNA interfaces, we determined the structure of OapB from Bacillus halodurans alone and in complex with an OLE RNA fragment at resolutions of 1.0 Å and 2.0 Å, respectively. The structure of OapB exhibits a K-shaped overall architecture wherein its conserved KOW motif and additional unique structural elements of OapB form a bipartite RNA-binding surface that docks to the P13 hairpin and P12.2 helix of OLE RNA. These high-resolution structures elucidate the molecular contacts used by OapB to form a stable RNP complex and explain the high conservation of sequences and structural features at the OapB-OLE RNA-binding interface. These findings provide insight into the role of OapB in the assembly and biological function of OLE RNP complex and can guide the exploration of additional possible OLE RNA-binding interactions present in OapB.


Assuntos
Bacillus/química , Proteínas de Bactérias/química , RNA Bacteriano/química , RNA não Traduzido/química , Ribonucleoproteínas/química , Sequência de Aminoácidos , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
4.
J Biol Chem ; 295(28): 9326-9334, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32376692

RESUMO

Noncoding RNAs (ncRNAs) longer than 200 nucleotides are rare in bacteria, likely because bacterial genomes are under strong evolutionary pressures to maintain a small genome size. Of the long ncRNAs unique to bacteria, the OLE (ornate, large, extremophilic) RNA class is among the largest and most structurally complex. OLE RNAs form a ribonucleoprotein (RNP) complex by partnering with at least two proteins, OapA and OapB, that directly bind OLE RNA. The biochemical functions of the OLE RNP complex remain unknown, but are required for proper adaptation to certain environmental stresses, such as cold temperatures, short chain alcohols, and high magnesium concentrations. In the current study, we used electrophoretic mobility shift assays to examine the binding of OLE RNA fragments by OapB and found that OapB recognizes a small subregion of OLE RNA, including stem P13, with a dissociation constant (KD ) of ∼700 pm Analyses with mutated RNA constructs, and the application of in vitro selection, revealed that strong binding of OLE RNA by OapB requires a stem containing a precisely located single-nucleotide bulge and a GNRA tetraloop. Although the vast majority of bacteria with the ole gene also have the oapB gene, there are many whose genomes contain oapB but lack ole, suggesting that OapB has other RNA partners in some species that might exhibit similar structural features.


Assuntos
Bacillus/química , Proteínas de Bactérias/química , RNA Bacteriano/química , RNA não Traduzido/química , Proteínas de Ligação a RNA/química , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
J Org Chem ; 79(13): 6269-78, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24931463

RESUMO

Intramolecular halogen bonds between aryl halide donors and suitable acceptors, such as carbonyl or quinolinyl groups, held in proximity by 1,2-aryldiyne linkers, provide triangular structures in the solid state. Aryldiyne linkers provide a nearly ideal template for intramolecular halogen bonding as minor deviations from alkyne linearity can accommodate a variety of halogen bonding interactions, including O···Cl, O···Br, O···I, N···Br, and N···I. Halogen bond lengths for these units, observed by single crystal X-ray crystallography, range from 2.75 to 2.97 Å. Internal bond angles of the semirigid bridge between halogen bond donor and acceptor are responsive to changes in the identity of the halogen, the identity of the acceptor, and the electronic environment around the halogen, with the triangles retaining almost perfect co-planarity in even the most strained systems. Consistency between experimental results and structures predicted by M06-2X/6-31G* calculations demonstrates the efficacy of this computational method for modeling halogen-bonded structures of this type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...