Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36829948

RESUMO

Cellular adaptations to hypoxia promote resistance to ionizing radiation (IR). This presents a challenge for treatment of head and neck cancer (HNC) that relies heavily on radiotherapy. Standard radiosensitizers often fail to reach diffusion-restricted hypoxic cells, whereas nitroimidazoles (NIs) [such as iodoazomycin arabinofuranoside (IAZA) and fluoroazomycin arabinofuranoside (FAZA)] can preferentially accumulate in hypoxic tumours. Here, we explored if the hypoxia-selective uptake of IAZA and FAZA could be harnessed to make HNC cells (FaDu) susceptible to radiation therapy. Cellular response to treatment was assessed through clonogenic survival assays and by monitoring DNA damage (immunofluorescence staining of DNA damage markers, γ-H2AX and p-53BP1, and by alkaline comet assay). The effects of reoxygenation were studied using the following assays: estimation of nucleoside incorporation to assess DNA synthesis rates, immunofluorescent imaging of chromatin-associated replication protein A as a marker of replication stress, and quantification of reactive oxygen species (ROS). Both IAZA and FAZA sensitized hypoxic HNC cells to IR, albeit the former is a better radiosensitizer. Radiosensitization by these compounds was restricted only to hypoxic cells, with no visible effects under normoxia. IAZA and FAZA impaired cellular adaptation to reoxygenation; high levels of ROS, reduced DNA synthesis capacity, and signs of replication stress were observed in reoxygenated cells. Overall, our data highlight the therapeutic potentials of IAZA and FAZA for targeting hypoxic HNC cells and provide rationale for future preclinical studies.

2.
Redox Biol ; 52: 102300, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430547

RESUMO

Solid tumours are often poorly oxygenated, which confers resistance to standard treatment modalities. Targeting hypoxic tumours requires compounds, such as nitroimidazoles (NIs), equipped with the ability to reach and become activated within diffusion limited tumour niches. NIs become selectively entrapped in hypoxic cells through bioreductive activation, and have shown promise as hypoxia directed therapeutics. However, little is known about their mechanism of action, hindering the broader clinical usage of NIs. Iodoazomycin arabinofuranoside (IAZA) and fluoroazomycin arabinofuranoside (FAZA) are clinically validated 2-NI hypoxic radiotracers with excellent tumour uptake properties. Hypoxic cancer cells have also shown preferential susceptibility to IAZA and FAZA treatment, making them ideal candidates for an in-depth study in a therapeutic setting. Using a head and neck cancer model, we show that hypoxic cells display higher sensitivity to IAZA and FAZA, where the drugs alter cell morphology, compromise DNA replication, slow down cell cycle progression and induce replication stress, ultimately leading to cytostasis. Effects of IAZA and FAZA on target cellular macromolecules (DNA, proteins and glutathione) were characterized to uncover potential mechanism(s) of action. Covalent binding of these NIs was only observed to cellular proteins, but not to DNA, under hypoxia. While protein levels remained unaffected, catalytic activities of NI target proteins, such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the detoxification enzyme glutathione S-transferase (GST) were significantly curtailed in response to drug treatment under hypoxia. Intraperitoneal administration of IAZA was well-tolerated in mice and produced early (but transient) growth inhibition of subcutaneous mouse tumours.


Assuntos
Neoplasias de Cabeça e Pescoço , Nitroimidazóis , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Hipóxia/tratamento farmacológico , Camundongos , Nitroimidazóis/farmacologia
3.
Semin Nucl Med ; 45(2): 122-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25704385

RESUMO

Hypoxia is prevalent in many solid tumors. Hypoxic tumors tend to exhibit rapid growth and aberrant vasculature, which lead to oxygen (O2) depletion and impaired drug delivery. The reductive environment in hypoxic tumors alters cellular metabolism, which can trigger transcriptional responses; induce genetic alterations; promote invasion, metastasis, resistance to radiotherapy and chemotherapy, tumor progression, and recurrence; and leads to poor local control and reduced survival rates. Therefore, exploiting the reductive microenvironment in hypoxic tumors by delivering electron-affinic, O2-mimetic radioactive drugs that bioreductively activate selectively in the hypoxic microenvironment offers a logical approach to molecular imaging of focal hypoxia. Because these agents also radiosensitize hypoxic cells, they provide an innovative approach to the therapy management of such tumors. To date, nuclear imaging of hypoxic tumor has proven to be clinically effective, whereas chemical radiosensitization by these compounds has not been helpful. The current review provides an insight into the chemistry, radiochemistry, and purification strategies for selected nitroaromatics that directly exploit the bioreductive environment in hypoxic cells. Both experimental and calculated single-electron reduction potentials of electron-affinic compounds, nitroimidazoles in particular, correlate with in vitro radiosensitizing properties, making them preferred choices for use as radiopharmaceuticals for diagnostic imaging and as sensitizers to enhance the killing effects of low-energy-transfer x-rays (O2-mimetic radiosensitization). Extensive research and careful drug design have led to the development of several potentially useful hypoxia-targeting drugs, for example, [(18)F]FAZA, [(18)F]FMISO, [(18)F]EF5, and [(123)I]IAZA, that accrue selectively in hypoxic cells. These molecular probes are now globally used in clinical hypoxia imaging, including cancer. Future innovative developments must, however, consider hypoxia-selective molecular processes and the physicochemical properties of the drugs that dictate their biodistribution, hypoxia-selective accumulation, pharmacokinetics, clearance, biochemical behavior, and metabolism. This will facilitate their ultimate transformation to effective molecular theranostics, leading to improved multimodal management of cancer.


Assuntos
Halogenação , Imagem Molecular/métodos , Sondas Moleculares/química , Nitrocompostos/química , Radioquímica/métodos , Hipóxia Celular , Humanos , Radioquímica/instrumentação
4.
Chem Pharm Bull (Tokyo) ; 51(4): 399-403, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12672991

RESUMO

The present work describes the synthesis of the beta-isomer of 1-alpha-D-(5-deoxy-5-iodoarabinofuranosyl)-2-nitroimidazole (IAZA). Radioiodinated IAZA ((123)I-IAZA) has been extensively studied as a radiopharmaceutical for the diagnosis of regional and/or focal tissue hypoxia in a variety of clinical pathologies. The beta-anomer of IAZA, 1-beta-D-(5-deoxy-5-iodoarabinofuranosyl)-2-nitroimidazole (beta-IAZA, 1), was synthesized via an unconventional route starting from 1-beta-D-(ribofuranosyl)-2-nitroimidazole (AZR), with a change of configuration at the C-2'-position to afford 1-beta-D-(arabinofuranosyl)-2-nitroimidazole (beta-AZA, 7). Nucleophilic iodination of the 5'-O-toluenesulfonyl-2',3'-di-O-acetyl precursor of beta-AZA, 9, followed by deprotection, afforded 1 in satisfactory yield. beta-IAZA (1) was also synthesized from 7 using molecular iodine and triphenylphosphine.


Assuntos
Nitroimidazóis/síntese química , Biomarcadores/química , Hipóxia Celular/fisiologia , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...