Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 614(7948): 564-571, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755093

RESUMO

Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1-3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6-8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.


Assuntos
Nucléolo Celular , Proteína HMGB1 , Humanos , Arginina/genética , Arginina/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Proteína HMGB1/química , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Síndrome , Mutação da Fase de Leitura , Transição de Fase
2.
Hum Genet ; 132(4): 461-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23329067

RESUMO

The c-Jun N-terminal kinases (JNKs) are stress-activated serine-threonine kinases that have recently been linked to various neurological disorders. We previously described a patient with intellectual disability (ID) and seizures (Patient 1), carrying a de novo chromosome translocation affecting the CNS-expressed MAPK10/JNK3 gene. Here, we describe a second ID patient (Patient 2) with a similar translocation that likewise truncates MAPK10/JNK3, highlighting a role for JNK3 in human brain development. We have pinpointed the breakpoint in Patient 2, which is just distal to that in Patient 1. In both patients, the rearrangement resulted in a predicted protein interrupted towards the C-terminal end of the kinase domain. We demonstrate that these truncated proteins, although capable of weak interaction with various known JNK scaffolds, are not capable of phosphorylating the classical JNK target c-Jun in vitro, which suggests that the patient phenotype potentially arises from partial loss of JNK3 function. We next investigated JNK3-binding partners to further explore potential disease mechanisms. We identified PSD-95, SAP102 and SHANK3 as novel interaction partners for JNK3, and we demonstrate that JNK3 and PSD-95 exhibit partially overlapping expression at synaptic sites in cultured hippocampal neurons. Moreover, JNK3, like JNK1, is capable of phosphorylating PSD-95 in vitro, whereas disease-associated mutant JNK3 proteins do not. We conclude that reduced JNK3 activity has potentially deleterious effects on neuronal function via altered regulation of a set of post-synaptic proteins.


Assuntos
Sequência de Aminoácidos/genética , Deficiência Intelectual/genética , Proteína Quinase 10 Ativada por Mitógeno/genética , Convulsões/metabolismo , Deleção de Sequência , Translocação Genética , Adolescente , Animais , Células COS , Chlorocebus aethiops , Proteína 4 Homóloga a Disks-Large , Feminino , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Convulsões/genética , Convulsões/patologia , Sinapses/genética , Sinapses/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Eur J Hum Genet ; 18(5): 539-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19953122

RESUMO

Characterisation of breakpoints in disease-associated balanced chromosome rearrangements (DBCRs), which disrupt or inactivate specific genes, has facilitated the molecular elucidation of a wide variety of genetic disorders. However, conventional methods for mapping chromosome breakpoints, such as in situ hybridisation with fluorescent dye-labelled bacterial artificial chromosome clones (BAC-FISH), are laborious, time consuming and often with insufficient resolution to unequivocally identify the disrupted gene. By combining DNA array hybridisation with chromosome sorting, the efficiency of breakpoint mapping has dramatically improved. However, this can only be applied when the physical properties of the derivative chromosomes allow them to be flow sorted. To characterise the breakpoints in all types of balanced chromosome rearrangements more efficiently and more accurately, we performed massively parallel sequencing using Illumina 1G analyser and ABI SOLiD systems to generate short sequencing reads from both ends of DNA fragments. We applied this method to four different DBCRs, including two reciprocal translocations and two inversions. By identifying read pairs spanning the breakpoints, we were able to map the breakpoints to a region of a few hundred base pairs that could be confirmed by subsequent PCR amplification and Sanger sequencing of the junction fragments. Our results show the feasibility of paired-end sequencing of systematic breakpoint mapping and gene finding in patients with disease-associated chromosome rearrangements.


Assuntos
Aberrações Cromossômicas , Quebra Cromossômica , Rearranjo Gênico/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...