Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(2): 637-648, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236720

RESUMO

Aggregation prone molecules, such as tau, form both historically well characterized fibrillar deposits (neurofibrillary tangles) and recently identified phosphate-buffered saline (PBS) extract species called proteopathic seeds. Both can cause normal endogenous tau to undergo templated misfolding. The relationship of these seeds to the fibrils that define tau-related diseases is unknown. We characterized the aqueous extractable and sarkosyl insoluble fibrillar tau species derived from human Alzheimer brain using mass spectrometry and in vitro bioassays. Post-translational modifications (PTMs) including phosphorylation, acetylation and ubiquitination are identified in both preparations. PBS extract seed competent tau can be distinguished from sarkosyl insoluble tau by the presence of overlapping, but less abundant, PTMs and an absence of some PTMs unique to the latter. The presence of ubiquitin and other PTMs on the PBS-extracted tau species correlates with the amount of tau in the seed competent size exclusion fractions, with the bioactivity and with the aggressiveness of clinical disease. These results demonstrate that the PTMs present on bioactive, seed competent PBS extract tau species are closely related to, but distinct from, the PTMs of mature paired helical filaments, consistent with the idea that they are a forme fruste of tau species that ultimately form fibrils.


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Humanos , Emaranhados Neurofibrilares/metabolismo , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA