Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 973087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426150

RESUMO

Selection on plant functional traits may occur through their direct effects on fitness (or a fitness component), or may be mediated by attributes of plant performance which have a direct impact on fitness. Understanding this link is particularly challenging for long-lived organisms, such as forest trees, where lifetime fitness assessments are rarely achievable, and performance features and fitness components are usually quantified from early-life history stages. Accordingly, we studied a cohort of trees from multiple populations of Eucalyptus pauciflora grown in a common-garden field trial established at the hot and dry end of the species distribution on the island of Tasmania, Australia. We related the within-population variation in leaf economic (leaf thickness, leaf area and leaf density) and hydraulic (stomatal density, stomatal length and vein density) traits, measured from two-year-old plants, to two-year growth performance (height and stem diameter) and to a fitness component (seven-year survival). When performance-trait relationships were modelled for all traits simultaneously, statistical support for direct effects on growth performance was only observed for leaf thickness and leaf density. Performance-based estimators of directional selection indicated that individuals with reduced leaf thickness and increased leaf density were favoured. Survival-performance relationships were consistent with size-dependent mortality, with fitness-based selection gradients estimated for performance measures providing evidence for directional selection favouring individuals with faster growth. There was no statistical support for an effect associated with the fitness-based quadratic selection gradient estimated for growth performance. Conditional on a performance measure, fitness-based directional selection gradients estimated for the leaf traits did not provide statistical support for direct effects of the focal traits on tree survival. This suggested that, under the environmental conditions of the trial site and time period covered in the current study, early-stage selection on the studied leaf traits may be mediated by their effects on growth performance, which in turn has a positive direct influence on later-age survival. We discuss the potential mechanistic basis of the direct effects of the focal leaf traits on tree growth, and the relevance of a putative causal pathway of trait effects on fitness through mediation by growth performance in the studied hot and dry environment.

2.
Plants (Basel) ; 11(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890479

RESUMO

With climate change impacting trees worldwide, enhancing adaptation capacity has become an important goal of provenance translocation strategies for forestry, ecological renovation, and biodiversity conservation. Given that not every species can be studied in detail, it is important to understand the extent to which climate adaptation patterns can be generalised across species, in terms of the selective agents and traits involved. We here compare patterns of genetic-based population (co)variation in leaf economic and hydraulic traits, climate-trait associations, and genomic differentiation of two widespread tree species (Eucalyptus pauciflora and E. ovata). We studied 2-year-old trees growing in a common-garden trial established with progeny from populations of both species, pair-sampled from 22 localities across their overlapping native distribution in Tasmania, Australia. Despite originating from the same climatic gradients, the species differed in their levels of population variance and trait covariance, patterns of population variation within each species were uncorrelated, and the species had different climate-trait associations. Further, the pattern of genomic differentiation among populations was uncorrelated between species, and population differentiation in leaf traits was mostly uncorrelated with genomic differentiation. We discuss hypotheses to explain this decoupling of patterns and propose that the choice of seed provenances for climate-based plantings needs to account for multiple dimensions of climate change unless species-specific information is available.

3.
Glob Chang Biol ; 26(8): 4572-4582, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520438

RESUMO

Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.


Assuntos
Ecossistema , Pradaria , Carbono , Nitrogênio/análise , Nutrientes , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...