Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Catal Sci Technol ; 13(3): 834-843, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36760341

RESUMO

When studying electrochemical oxygen reduction reactions in homogeneous media, special attention must be given to the significant background activity present with conventional electrode materials. The intrinsic electrocatalytic activity of different materials can be investigated using complementary methods, such as the rotating ring-disc electrode (RRDE) technique and chronoamperometric electrolysis with product quantification. This report presents a detailed investigation of the electrocatalytic ability of hydroxy anthraquinone derivatives and riboflavin towards hydrogen peroxide (H2O2) production via a novel RRDE subtraction method together with chronoamperometric electrolysis. Qualitative trends linking the two methods were obtained, such as a higher excess current correlating with both higher productivity and selectivity. As such, a valuable tool is provided to increase the understanding of the electrocatalytic ability of homogeneous solutions toward improving the oxygen reduction reaction.

2.
Anal Sci Adv ; 4(11-12): 335-346, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38715649

RESUMO

Surface-enhanced Raman scattering (SERS) is a sensitive and fast technique for sensing applications such as chemical trace analysis. However, a successful, high-throughput practical implementation necessitates the availability of simple-to-use and economical SERS substrates. In this work, we present a robust, reproducible, flexible and yet cost-effective SERS substrate suited for the sensitive detection of analytes at near-infrared (NIR) excitation wavelengths. The fabrication is based on a simple dropcast deposition of silver or gold nanomaterials on an aluminium foil support, making the design suitable for mass production. The fabricated SERS substrates can withstand very high average Raman laser power of up to 400 mW in the NIR wavelength range while maintaining a linear signal response of the analyte. This enables a combined high signal enhancement potential provided by (i) the field enhancement via the localized surface plasmon resonance introduced by the noble metal nanomaterials and (ii) additional enhancement proportional to an increase of the applicable Raman laser power without causing the thermal decomposition of the analyte. The application of the SERS substrates for the trace detection of melamine and rhodamine 6G is demonstrated, which shows limits of detection smaller than 0.1 ppm and analytical enhancement factors on the order of 104 as compared to bare aluminium foil.

3.
J Phys Chem C Nanomater Interfaces ; 126(33): 14138-14154, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36051252

RESUMO

Electrochemical capture of carbon dioxide (CO2) using organic quinones is a promising and intensively studied alternative to the industrially established scrubbing processes. While recent studies focused only on the influence of substituents having a simple mesomeric or nucleophilicity effect, we have systematically selected six anthraquinone (AQ) derivatives (X-AQ) with amino and hydroxy substituents in order to thoroughly study the influence thereof on the properties of electrochemical CO2 capture. Experimental data from cyclic voltammetry (CV) and UV-Vis spectroelectrochemistry of solutions in acetonitrile were analyzed and compared with innovative density functional tight binding computational results. Our experimental and theoretical results provide a coherent explanation of the influence of CO2 on the CV data in terms of weak and strong binding nomenclature of the dianions. In addition to this terminology, we have identified the dihydroxy substituted AQ as a new class of molecules forming rather unstable [X-AQ-(CO2) n ]2- adducts. In contrast to the commonly used dianion consideration, the results presented herein reveal opposite trends in stability for the X-AQ-CO2 •- radical species for the first time. To the best of our knowledge, this study presents theoretically calculated UV-Vis spectra for the various CO2-AQ reduction products for the first time, enabling a detailed decomposition of the spectroelectrochemical data. Thus, this work provides an extension of the existing classification with proof of the existence of X-AQ-CO2 species, which will be the basis of future studies focusing on improved materials for electrochemical CO2 capture.

4.
Phys Chem Chem Phys ; 24(26): 16207-16219, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35757985

RESUMO

Anthraquinone (AQ) has long been identified as a highly promising lead structure for various applications in organic electronics. Considering the enormous number of possible substitution patterns of the AQ lead structure, with only a minority being commercially available, a systematic experimental screening of the associated electrochemical potentials represents a highly challenging and time consuming task, which can be greatly enhanced via suitable virtual pre-screening techniques. In this work the calculated electrochemical reduction potentials of pristine AQ and 12 hydroxy- or/and amino-substituted AQ derivatives in N,N-dimethylformamide have been correlated against newly measured experimental data. In addition to the calculations performed using density functional theory (DFT), the performance of different semi-empirical density functional tight binding (DFTB) approaches has been critically assessed. It was shown that the SCC DFTB/3ob parametrization in conjunction with the COSMO solvation model provides a highly adequate description of the electrochemical potentials also in the case of the two-fold reduced species. While the quality in the correlation against the experimental data proved to be slightly inferior compared to the employed DFT approach, the highly advantageous cost-accuracy ratio of the SCC DFTB/3ob/COSMO framework has important implications in the formulation of hierarchical screening strategies for materials associated with organic electronics. Based on the observed performance, the low-cost method provides sufficiently accurate results to execute efficient pre-screening protocols, which may then be followed by a DFT-based refinement of the best candidate structures to facilitate a systematic search for new, high-performance organic electronic materials.


Assuntos
Antraquinonas , Oxirredução
5.
ACS Catal ; 11(8): 4920-4928, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33898080

RESUMO

Compound materials, such as transition-metal (TM) carbides, are anticipated to be effective electrocatalysts for the carbon dioxide reduction reaction (CO2RR) to useful chemicals. This expectation is nurtured by density functional theory (DFT) predictions of a break of key adsorption energy scaling relations that limit CO2RR at parent TMs. Here, we evaluate these prospects for hexagonal Mo2C in aqueous electrolytes in a multimethod experiment and theory approach. We find that surface oxide formation completely suppresses the CO2 activation. The oxides are stable down to potentials as low as -1.9 V versus the standard hydrogen electrode, and solely the hydrogen evolution reaction (HER) is found to be active. This generally points to the absolute imperative of recognizing the true interface establishing under operando conditions in computational screening of catalyst materials. When protected from ambient air and used in nonaqueous electrolyte, Mo2C indeed shows CO2RR activity.

6.
J Phys Chem C Nanomater Interfaces ; 125(7): 3745-3757, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33815649

RESUMO

The ordering effects in anthraquinone (AQ) stacking forced by thin-film application and its influence on dimer solubility and current collector adhesion are investigated. The structural characteristics of AQ and its chemical environment are found to have a substantial influence on its electrochemical performance. Computational investigation for different charged states of AQ on a carbon substrate obtained via basin hopping global minimization provides important insights into the physicochemical thin-film properties. The results reveal the ideal stacking configurations of the individual AQ-carrier systems and show ordering effects in a periodic supercell environment. The latter reveals the transition from intermolecular hydrogen bonding toward the formation of salt bridges between the reduced AQ units and a stabilizing effect upon the dimerlike rearrangement, while the strong surface-molecular interactions in the thin-film geometries are found to be crucial for the formed dimers to remain electronically active. Both characteristics, the improved current collector adhesion and the stabilization due to dimerization, are mutual benefits of thin-film electrodes over powder-based systems. This hypothesis has been further investigated for its potential application in sodium ion batteries. Our results show that AQ thin-film electrodes exhibit significantly better specific capacities (233 vs 87 mAh g-1 in the first cycle), Coulombic efficiencies, and long-term cycling performance (80 vs 4 mAh g-1 after 100 cycles) over the AQ powder electrodes. By augmenting the experimental findings via computational investigations, we are able to suggest design strategies that may foster the performance of industrially desirable powder-based electrode materials.

7.
Chemistry ; 27(10): 3192, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33432677

RESUMO

Invited for the cover of this issue is the group of Ian Teasdale and Yolanda Salinas at the Johannes Kepler University Linz. The image depicts the self-propelled Janus micromotors reported in this work. Read the full text of the article at 10.1002/chem.202004792.

8.
Chemistry ; 27(10): 3262-3267, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33205559

RESUMO

This work reports a reversible braking system for micromotors that can be controlled by small temperature changes (≈5 °C). To achieve this, gated-mesoporous organosilica microparticles are internally loaded with metal catalysts (to form the motor) and the exterior (partially) grafted with thermosensitive bottle-brush polyphosphazenes to form Janus particles. When placed in an aqueous solution of H2 O2 (the fuel), rapid forward propulsion of the motors ensues due to decomposition of the fuel. Conformational changes of the polymers at defined temperatures regulate the bubble formation rate and thus act as brakes with considerable deceleration/acceleration observed. As the components can be easily varied, this represents a versatile, modular platform for the exogenous velocity control of micromotors.

9.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374613

RESUMO

A series of novel soluble nature-inspired flavin derivatives substituted with short butyl and bulky ethyl-adamantyl alkyl groups was prepared via simple and straightforward synthetic approach with moderate to good yields. The comprehensive characterization of the materials, to assess their application potential, has demonstrated that the modification of the conjugated flavin core enables delicate tuning of the absorption and emission properties, optical bandgap, frontier molecular orbital energies, melting points, and thermal stability. Moreover, the thin films prepared thereof exhibit smooth and homogeneous morphology with generally high stability over time.


Assuntos
Alquilantes/química , Riboflavina/química , Semicondutores , Alquilação
10.
ACS Appl Energy Mater ; 3(11): 10611-10618, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33251486

RESUMO

In this report, we present results on the electrocatalytic activity of conducting polymers [polyaniline (PANI) and polypyrrole (PPy)] toward the electrochemical oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). The electropolymerization of the polymers and electrolysis conditions were optimized for H2O2 production. On flat glassy carbon (GC) electrodes, the faradaic efficiency (FE) for H2O2 production was significantly improved by the polymers. Rotating disc electrode (RDE) studies revealed that this is mainly a result of blocking further H2O2 to the water reduction pathway by the polymers. PPy on carbon paper (CP) significantly increased the molar production of H2O2 by over 250% at an average FE of above 95% compared to bare CP with a FE of 25%. Thus, the polymers are acting as catalysts on the electrode for the ORR, although their catalytic mechanisms differ from other electrocatalysts.

11.
Chemistry ; 26(72): 17559-17566, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32767398

RESUMO

In this work 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) is investigated as electrode material for organic Na-ion batteries. Since PTCDI is a widely used industrial pigment, it may turn out to be a cost-effective, abundant, and environmentally benign cathode material for secondary Na-ion batteries. Among other carbonyl pigments, PTCDI is especially interesting due to its high Na-storage capacity in combination with remarkable high rate capabilities. The detailed analysis of cyclic voltammetry measurements reveals a diffusion-less mechanism, suggesting that Na-ion storage in the PTCDI film allows for exceptionally fast charging/discharging rates. This finding is further corroborated by galvanostatic sodiation measurements at high rates of 17 C (2.3 A g-1 ), showing that 57 % of the theoretically possible capacity of PTCDI, or 78 mAh g-1 , are attained in only 3.5 min charging time.

12.
ACS Appl Mater Interfaces ; 12(29): 32615-32621, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32573248

RESUMO

Mechanically interlocking redox-active anthraquinone onto single-walled carbon nanotubes (AQ-MINT) gives a new and advanced example of a noncovalent architecture for an electrochemical platform. Electrochemical studies of AQ-MINT as an electrode reveal enhanced electrochemical stability in both aqueous and organic solvents compared to physisorbed AQ-based electrodes. While maintaining the electrochemical properties of the parent anthraquinone molecules, we observe a stable oxygen reduction reaction to hydrogen peroxide (H2O2). Using such AQ-MINT electrodes, 7 and 2 µmol of H2O2 are produced over 8 h under basic and neutral conditions, while the control system of SWCNTs produces 2.2 and 0.5 µmol, respectively. These results reveal the potential of this rotaxane-type immobilization approach for heterogenized electrocatalysis.

17.
Angew Chem Int Ed Engl ; 58(15): 5059-5063, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715778

RESUMO

A precious-metal- and Cd-free photocatalyst system for efficient H2 evolution from aqueous protons with a performance comparable to Cd-based quantum dots is presented. Rod-shaped ZnSe nanocrystals (nanorods, NRs) with a Ni(BF4 )2 co-catalyst suspended in aqueous ascorbic acid evolve H2 with an activity up to 54±2 mmol H 2 gZnSe -1 h-1 and a quantum yield of 50±4 % (λ=400 nm) under visible light illumination (AM 1.5G, 100 mW cm-2 , λ>400 nm). Under simulated full-spectrum solar irradiation (AM 1.5G, 100 mW cm-2 ), up to 149±22 mmol H 2 gZnSe -1 h-1 is generated. Significant photocorrosion was not noticeable within 40 h and activity was even observed without an added co-catalyst. The ZnSe NRs can also be used to construct an inexpensive delafossite CuCrO2 photocathode, which does not rely on a sacrificial electron donor. Immobilized ZnSe NRs on CuCrO2 generate photocurrents of around -10 µA cm-2 in an aqueous electrolyte solution (pH 5.5) with a photocurrent onset potential of approximately +0.75 V vs. RHE. This work establishes ZnSe as a state-of-the-art light absorber for photocatalytic and photoelectrochemical H2 generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...