Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(1): 186-200, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37656990

RESUMO

Stroke results in local neural disconnection and brain-wide neuronal network dysfunction leading to neurological deficits. Beyond the hyper-acute phase of ischaemic stroke, there is no clinically-approved pharmacological treatment that alleviates sensorimotor impairments. Functional recovery after stroke involves the formation of new or alternative neuronal circuits including existing neural connections. The type-5 metabotropic glutamate receptor (mGluR5) has been shown to modulate brain plasticity and function and is a therapeutic target in neurological diseases outside of stroke. We investigated whether mGluR5 influences functional recovery and network reorganization rodent models of focal ischaemia. Using multiple behavioural tests, we observed that treatment with negative allosteric modulators (NAMs) of mGluR5 (MTEP, fenobam and AFQ056) for 12 days, starting 2 or 10 days after stroke, restored lost sensorimotor functions, without diminishing infarct size. Recovery was evident within hours after initiation of treatment and progressed over the subsequent 12 days. Recovery was prevented by activation of mGluR5 with the positive allosteric modulator VU0360172 and accelerated in mGluR5 knock-out mice compared with wild-type mice. After stroke, multisensory stimulation by enriched environments enhanced recovery, a result prevented by VU0360172, implying a role of mGluR5 in enriched environment-mediated recovery. Additionally, MTEP treatment in conjunction with enriched environment housing provided an additive recovery enhancement compared to either MTEP or enriched environment alone. Using optical intrinsic signal imaging, we observed brain-wide disruptions in resting-state functional connectivity after stroke that were prevented by mGluR5 inhibition in distinct areas of contralesional sensorimotor and bilateral visual cortices. The levels of mGluR5 protein in mice and in tissue samples of stroke patients were unchanged after stroke. We conclude that neuronal circuitry subserving sensorimotor function after stroke is depressed by a mGluR5-dependent maladaptive plasticity mechanism that can be restored by mGluR5 inhibition. Post-acute stroke treatment with mGluR5 NAMs combined with rehabilitative training may represent a novel post-acute stroke therapy.


Assuntos
Isquemia Encefálica , Doenças do Sistema Nervoso , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Isquemia Encefálica/tratamento farmacológico , Camundongos Knockout , Doenças do Sistema Nervoso/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo
2.
Elife ; 112022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723585

RESUMO

Understanding circuit-level manipulations that affect the brain's capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for targeted therapeutic interventions after focal ischemia.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Membro Anterior , Camundongos , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Córtex Somatossensorial
3.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638567

RESUMO

Dopaminergic treatment in combination with rehabilitative training enhances long-term recovery after stroke. However, the underlying mechanisms on structural plasticity are unknown. Here, we show an increased dopaminergic innervation of the ischemic territory during the first week after stroke induced in Wistar rats subjected to transient occlusion of the middle cerebral artery (tMCAO) for 120 min. This response was also found in rats subjected to permanent focal ischemia induced by photothrombosis (PT) and mice subjected to PT or tMCAO. Dopaminergic branches were detected in the infarct core of mice and rats in both stroke models. In addition, the Nogo A pathway was significantly downregulated in rats treated with levodopa (LD) compared to vehicle-treated animals subjected to tMCAO. Specifically, the number of Nogo A positive oligodendrocytes as well as the levels of Nogo A and the Nogo A receptor were significantly downregulated in the peri-infarct area of LD-treated animals, while the number of Oligodendrocyte transcription factor 2 positive cells increased in this region after treatment. In addition, we observed lower protein levels of Growth Associated Protein 43 in the peri-infarct area compared to sham-operated animals without treatment effect. The results provide the first evidence of the plasticity-promoting actions of dopaminergic treatment following stroke.


Assuntos
Dopaminérgicos/farmacologia , Dopaminérgicos/uso terapêutico , Levodopa/farmacologia , Levodopa/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação para Baixo/efeitos dos fármacos , Proteína GAP-43/metabolismo , Infarto da Artéria Cerebral Média/complicações , Masculino , Camundongos , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Receptores Nogo/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Ratos Wistar , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Trombose/complicações
4.
Mol Neurobiol ; 58(11): 5876-5889, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417725

RESUMO

Following stroke, attenuation of detrimental inflammatory pathways might be a promising strategy to improve long-term outcome. In particular, cascades driven by pro-inflammatory chemokines interact with neurotransmitter systems such as the GABAergic system. This crosstalk might be of relevance for mechanisms of neuronal plasticity, however, detailed studies are lacking. The purpose of this study was to determine if treatment with 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (AMD3100), an antagonist to the C-X-C chemokine receptor type 4 (CXCR4) and partial allosteric agonist to CXCR7 (AMD3100) alone or in combination with C-X3-C chemokine receptor type 1 (CX3CR1) deficiency, affect the expression of GABAA subunits and glutamate decarboxylase (GAD) isoforms. Heterozygous, CX3CR1-deficient mice and wild-type littermates were subjected to photothrombosis (PT). Treatment with AMD3100 (0.5 mg/kg twice daily i.p.) was administered starting from day 2 after induction of PT until day 14 after the insult. At this time point, GABAA receptor subunits (α3, ß3, δ), GAD65 and GAD67, and CXCR4 were analyzed from the peri-infarct tissue and homotypic brain regions of the contralateral hemisphere by quantitative real-time PCR and Western Blot. Fourteen days after PT, CX3CR1 deficiency resulted in a significant decrease of the three GABAA receptor subunits in both the lesioned and the contralateral hemisphere compared to sham-operated mice. Treatment with AMD3100 promoted the down-regulation of GABAA subunits and GAD67 in the ipsilateral peri-infarct area, while the ß3 subunit and the GAD isoforms were up-regulated in homotypic regions of the contralateral cortex. Changes in GABAA receptor subunits and GABA synthesis suggest that the CXCR4/7 and CX3CR1 signaling pathways are involved in the regulation of GABAergic neurotransmission in the post-ischemic brain.


Assuntos
Anti-Inflamatórios/uso terapêutico , Benzilaminas/uso terapêutico , Receptor 1 de Quimiocina CX3C/deficiência , Ciclamos/uso terapêutico , Glutamato Descarboxilase/biossíntese , Trombose Intracraniana/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Receptores de GABA-A/biossíntese , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Genes Reporter , Glutamato Descarboxilase/genética , Trombose Intracraniana/genética , Trombose Intracraniana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Subunidades Proteicas , Receptores CXCR , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/biossíntese , Receptores CXCR4/genética , Receptores de GABA-A/genética
5.
Brain Res Bull ; 155: 61-66, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805305

RESUMO

Levodopa is a precursor to dopamine that has been shown to improve functional recovery following stroke partly achieved through mechanisms of brain plasticity. This study investigates if dopamine might affect plasticity by having a direct effect on synaptic plasticity through alterations in neurotransmitter release and re-uptake. Synaptogyrin is a synaptic vesicle protein that has been suggested to be involved in dopamine re-uptake in the synaptic terminal. Therefore, we investigated if levodopa has an effect on the expression of synaptogyrin 1. Thy1-YFP mice were subjected to photothrombosis as an experimental model of stroke. Starting two days after surgery they were treated with either levodopa or a vehicle solution (saline) on a daily basis until day seven following surgery. On day seven they were sacrificed and their brains stained for Dopamine 1 receptor (D1R), Dopamine 2 receptor (D2R) and Parvalbumin (PV). Neu-N stainings were used to estimate infarct size. A second group of mice were subjected to photothrombosis and also treated with either levodopa or a vehicle solution in the same manner as previously mentioned. On day seven they were then sacrificed, and samples of brain tissue were taken for protein determination. Western blots were carried out to investigate possible differences in synaptogyrin expression between the two groups. Immunofluorescent stains showed the presence of dopamine receptors on the YFP-positive neurons and on PV-expressing neurones. Our Western Blot analysis showed a significant decrease in the expression of synaptogyrin in levodopa-treated mice. Our stains showed co-localisation with Thy-1 neurones and PV-expressing neurones for both D1 and D2 receptors. This indicates that dopamine has the ability to bind to, and directly influence cortical neurons, as well as inhibitory interneurons. We discovered a considerable decrease in synaptogyrin expression through levodopa treatment, suggesting that this might be a mechanism for regulating brain plasticity.


Assuntos
Encéfalo/efeitos dos fármacos , Dopaminérgicos/administração & dosagem , Levodopa/administração & dosagem , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/metabolismo , Sinaptogirinas/metabolismo , Animais , Encéfalo/metabolismo , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
6.
Acta Neuropathol Commun ; 7(1): 216, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864415

RESUMO

The development of new therapeutic approaches for stroke patients requires a detailed understanding of the mechanisms that enhance recovery of lost neurological functions. The efficacy to enhance homeostatic mechanisms during the first weeks after stroke will influence functional outcome. Thyroid hormones (TH) are essential regulators of neuronal plasticity, however, their role in recovery related mechanisms of neuronal plasticity after stroke remains unknown. This study addresses important findings of 3,5,3'-triiodo-L-thyronine (T3) in the regulation of homeostatic mechanisms that adjust excitability - inhibition ratio in the post-ischemic brain. This is valid during the first 2 weeks after experimental stroke induced by photothrombosis (PT) and in cultured neurons subjected to an in vitro model of acute cerebral ischemia. In the human post-stroke brain, we assessed the expression pattern of TH receptors (TR) protein levels, important for mediating T3 actions.Our results show that T3 modulates several plasticity mechanisms that may operate on different temporal and spatial scales as compensatory mechanisms to assure appropriate synaptic neurotransmission. We have shown in vivo that long-term administration of T3 after PT significantly (1) enhances lost sensorimotor function; (2) increases levels of synaptotagmin 1&2 and levels of the post-synaptic GluR2 subunit in AMPA receptors in the peri-infarct area; (3) increases dendritic spine density in the peri-infarct and contralateral region and (4) decreases tonic GABAergic signaling in the peri-infarct area by a reduced number of parvalbumin+ / c-fos+ neurons and glutamic acid decarboxylase 65/67 levels. In addition, we have shown that T3 modulates in vitro neuron membrane properties with the balance of inward glutamate ligand-gated channels currents and decreases synaptotagmin levels in conditions of deprived oxygen and glucose. Interestingly, we found increased levels of TRß1 in the infarct core of post-mortem human stroke patients, which mediate T3 actions. Summarizing, our data identify T3 as a potential key therapeutic agent to enhance recovery of lost neurological functions after ischemic stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Acidente Vascular Cerebral/fisiopatologia , Tri-Iodotironina/administração & dosagem , Animais , Encéfalo/fisiopatologia , Isquemia Encefálica/metabolismo , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Homeostase , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Receptores dos Hormônios Tireóideos/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Sinaptotagminas/metabolismo
7.
FASEB J ; 33(12): 14204-14220, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31665922

RESUMO

Polymorphic variants of the gene encoding for metabotropic glutamate receptor 3 (mGlu3) are linked to schizophrenia. Because abnormalities of cortical GABAergic interneurons lie at the core of the pathophysiology of schizophrenia, we examined whether mGlu3 receptors influence the developmental trajectory of cortical GABAergic transmission in the postnatal life. mGlu3-/- mice showed robust changes in the expression of interneuron-related genes in the prefrontal cortex (PFC), including large reductions in the expression of parvalbumin (PV) and the GluN1 subunit of NMDA receptors. The number of cortical cells enwrapped by perineuronal nets was increased in mGlu3-/- mice, suggesting that mGlu3 receptors shape the temporal window of plasticity of PV+ interneurons. Electrophysiological measurements of GABAA receptor-mediated responses revealed a more depolarized reversal potential of GABA currents in the somata of PFC pyramidal neurons in mGlu3-/- mice at postnatal d 9 associated with a reduced expression of the K+/Cl- symporter. Finally, adult mGlu3-/- mice showed lower power in electroencephalographic rhythms at 1-45 Hz in quiet wakefulness as compared with their wild-type counterparts. These findings suggest that mGlu3 receptors have a strong impact on the development of cortical GABAergic transmission and cortical neural synchronization mechanisms corroborating the concept that genetic variants of mGlu3 receptors may predispose to psychiatric disorders.-Imbriglio, T., Verhaeghe, R., Martinello, K., Pascarelli, M. T., Chece, G., Bucci, D., Notartomaso, S., Quattromani, M., Mascio, G., Scalabrì, F., Simeone, A., Maccari, S., Del Percio, C., Wieloch, T., Fucile, S., Babiloni, C., Battaglia, G., Limatola, C., Nicoletti, F., Cannella, M. Developmental abnormalities in cortical GABAergic system in mice lacking mGlu3 metabotropic glutamate receptors.


Assuntos
Córtex Cerebral/anormalidades , Embrião de Mamíferos/anormalidades , Neurônios GABAérgicos/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Biomarcadores , Córtex Cerebral/metabolismo , Feminino , Regulação da Expressão Gênica , Genes Homeobox , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro , Receptores de Glutamato Metabotrópico/genética
8.
BMC Neurosci ; 19(1): 9, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523072

RESUMO

BACKGROUND: Labor subjects the fetus to an hypoxic episode and concomitant adrenomodullary catecholamine surge that may provide protection against the hypoxic insult. The beta1-adrenergic agonist dobutamine protects against hypoxia/aglycemia induced neuronal damage. We aimed to identify the associated protective biological processes involved. RESULTS: Hippocampal slices from 6 days old mice showed significant changes of gene expression comparing slices with or without dobutamine (50 mM) in the following two experimental paradigms: (1) control conditions versus lipopolysacharide (LPS) stimulation and (2) oxygen-glucose deprivation (OGD), versus combined LPS/OGD. Dobutamine depressed the inflammatory response by modifying the toll-like receptor-4 signalling pathways, including interferon regulatory factors and nuclear factor κ B activation in experimental paradigm 1. The anti-oxidant defense genes superoxide dismutase 3 showed an upregulation in the OGD paradigm while thioredoxin reductase was upregulated in LPS paradigm. The survival genes Bag-3, Tinf2, and TMBIM-1, were up-regulated in paradigm 1. Moreover, increased levels of SOD3 were verified on the protein level 24 h after OGD and control stimulation in cultures with or without preconditioning with LPS and dobutamine, respectively. CONCLUSIONS: Neuroprotective treatment with dobutamine depresses expression of inflammatory mediators and promotes the defense against oxidative stress and depresses apoptotic genes in a model of neonatal brain hypoxia/ischemia interpreted as pharmacological preconditioning. We conclude that beta1-adrenoceptor activation might be an efficient strategy for identifying novel pharmacological targets for protection of the neonatal brain.


Assuntos
Antioxidantes/farmacologia , Dobutamina/farmacologia , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/genética , Animais , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Oxidantes/metabolismo , Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima
9.
Neurobiol Dis ; 112: 91-105, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29367009

RESUMO

In the brain, focal ischemia results in a local region of cell death and disruption of both local and remote functional neuronal networks. Tissue reorganization following stroke can be limited by factors such as extracellular matrix (ECM) molecules that prevent neuronal growth and synaptic plasticity. The brain's ECM plays a crucial role in network formation, development, and regeneration of the central nervous system. Further, the ECM is essential for proper white matter tract development and for the formation of structures called perineuronal nets (PNNs). PNNs mainly surround parvalbumin/GABA inhibitory interneurons, of importance for processing sensory information. Previous studies have shown that downregulating PNNs after stroke reduces the neurite-inhibitory environment, reactivates plasticity, and promotes functional recovery. Resting-state functional connectivity (RS-FC) within and across hemispheres has been shown to correlate with behavioral recovery after stroke. However, the relationship between PNNs and RS-FC has not been examined. Here we studied a quadruple knock-out mouse (Q4) that lacks four ECM components: brevican, neurocan, tenascin-C and tenascin-R. We applied functional connectivity optical intrinsic signal (fcOIS) imaging in Q4 mice and wild-type (129S1 mice) before and 14 days after photothrombotic stroke (PT) to understand how the lack of crucial ECM components affects neuronal networks and functional recovery after stroke. Limb-placement ability was evaluated at 2, 7 and 14 days of recovery through the paw-placement test. Q4 mice exhibited significantly impaired homotopic RS-FC compared to wild-type mice, especially in the sensory and parietal regions. Changes in RS-FC were significantly correlated with the number of interhemispheric callosal crossings in those same regions. PT caused unilateral damage to the sensorimotor cortex and deficits of tactile-proprioceptive placing ability in contralesional fore- and hindlimbs, but the two experimental groups did not present significant differences in infarct size. Two weeks after PT, a general down-scaling of regional RS-FC as well as the number of regional functional connections was visible for all cortical regions and most notable in the somatosensory areas of both Q4 and wild-type mice. Q4 mice exhibited higher intrahemispheric RS-FC in contralesional sensory and motor cortices compared to control mice. We propose that the lack of growth inhibiting ECM components in the Q4 mice potentially worsen behavioral outcome in the early phase after stroke, but subsequently facilitates modulation of contralesional RS-FC which is relevant for recovery of sensory motor function. We conclude that Q4 mice represent a valuable model to study how the elimination of ECM genes compromises neuronal function and plasticity mechanisms after stroke.


Assuntos
Matriz Extracelular/fisiologia , Rede Nervosa/fisiologia , Imagem Óptica/métodos , Descanso/fisiologia , Córtex Sensório-Motor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Feminino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout
10.
Neuroimage Clin ; 17: 717-730, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29264113

RESUMO

Stroke causes direct structural damage to local brain networks and indirect functional damage to distant brain regions. Neuroplasticity after stroke involves molecular changes within perilesional tissue that can be influenced by regions functionally connected to the site of injury. Spontaneous functional recovery can be enhanced by rehabilitative strategies, which provides experience-driven cell signaling in the brain that enhances plasticity. Functional neuroimaging in humans and rodents has shown that spontaneous recovery of sensorimotor function after stroke is associated with changes in resting-state functional connectivity (RS-FC) within and across brain networks. At the molecular level, GABAergic inhibitory interneurons can modulate brain plasticity in peri-infarct and remote brain regions. Among this cell-type, a decrease in parvalbumin (PV)-immunoreactivity has been associated with improved behavioral outcome. Subjecting rodents to multisensory stimulation through exposure to an enriched environment (EE) enhances brain plasticity and recovery of function after stroke. Yet, how multisensory stimulation relates to RS-FC has not been determined. In this study, we investigated the effect of EE on recovery of RS-FC and behavior in mice after stroke, and if EE-related changes in RS-FC were associated with levels of PV-expressing neurons. Photothrombotic stroke was induced in the sensorimotor cortex. Beginning 2 days after stroke, mice were housed in either standard environment (STD) or EE for 12 days. Housing in EE significantly improved lost tactile-proprioceptive function compared to mice housed in STD environment. RS-FC in the mouse was measured by optical intrinsic signal imaging 14 days after stroke or sham surgery. Stroke induced a marked reduction in RS-FC within several perilesional and remote brain regions. EE partially restored interhemispheric homotopic RS-FC between spared motor regions, particularly posterior secondary motor. Compared to mice housed in STD cages, EE exposure lead to increased RS-FC between posterior secondary motor regions and contralesional posterior parietal and retrosplenial regions. The increased regional RS-FC observed in EE mice after stroke was significantly correlated with decreased PV-immunoreactivity in the contralesional posterior motor region. In conclusion, experimental stroke and subsequent housing in EE induces dynamic changes in RS-FC in the mouse brain. Multisensory stimulation associated with EE enhances RS-FC among distinct brain regions relevant for recovery of sensorimotor function and controlled movements that may involve PV/GABA interneurons. Our results indicate that targeting neural circuitry involving spared motor regions across hemispheres by neuromodulation and multimodal sensory stimulation could improve rehabilitation after stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Animais , Encéfalo/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/reabilitação , Mapeamento Encefálico , Meio Ambiente , Neurônios GABAérgicos/metabolismo , Camundongos Endogâmicos C57BL , Atividade Motora , Imagem Óptica , Parvalbuminas/metabolismo , Propriocepção , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral
11.
Mol Neurobiol ; 55(3): 2196-2213, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28290150

RESUMO

Following stroke, complete cellular death in the ischemic brain area may ensue, with remaining brain areas undergoing tissue remodelling to various degrees. Experience-dependent brain plasticity exerted through an enriched environment (EE) promotes remodelling after central nervous system injury, such as stroke. Post-stroke tissue reorganization is modulated by growth inhibitory molecules differentially expressed within the ischemic hemisphere, like chondroitin sulfate proteoglycans found in perineuronal nets (PNNs). PNNs in the neocortex predominantly enwrap parvalbumin-containing GABAergic (PV/GABA) neurons, important in sensori-information processing. Here, we investigate how extracellular matrix (ECM) proteases and their inhibitors may participate in the regulation of PNN integrity during stroke recovery. Rats were subjected to photothrombotic stroke in the motor cortex, and functional deficits were assessed at 7 days of recovery. Sham and stroked rats were housed in either standard or EE conditions for 5 days, and infarct volumes were calculated. PNNs were visualized by immunohistochemistry and counted in the somatosensory cortex of both hemispheres. mRNA expression levels of ECM proteases and protease inhibitors were assessed by RT-qPCR and their activity analyzed by gel zymography. PNNs and protease activity were also studied in brains from stroke patients where similar results were observed. EE starting 2 days after stroke and continuing for 5 days stimulated behavioral recovery of limb-placement ability without affecting infarct size. EE promoted a decrease of PNNs around PV/GABA neurons and a concomitant modulation of the proteolytic activity and mRNA expression of ECM proteases and protease inhibitors in the somatosensory cortex. This study provides molecular targets for novel therapies that could support rehabilitation of stroke patients.


Assuntos
Meio Ambiente , Matriz Extracelular/metabolismo , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos , Acidente Vascular Cerebral/patologia , Reabilitação do Acidente Vascular Cerebral/tendências
13.
BMC Neurosci ; 18(1): 11, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28061814

RESUMO

BACKGROUND: The fractalkine/CX3C chemokine receptor 1 (CX3CR1) pathway has been identified to play an essential role in the chemotaxis of microglia, leukocyte trafficking and microglia/macrophage recruitment. It has also been shown to be important in the regulation of the inflammatory response in the early phase after experimental stroke. The present study was performed to investigate if CX3CR1 deficiency affects microglia during the first 14 days with consequences for tissue damage after experimental stroke. RESULTS: CX3CR1 deficiency significantly increased the number of intersections of GFP positive microglia in the proximal peri-infarct area at 2, 7 and 14 days following tMCAO compared to heterozygous and wildtype littermates. In addition, the length of microglial branches increased until day 7 in CX3CR1 knockout mice while the presence of a functional CX3CR1 allele resulted in a gradual reduction of their length following tMCAO. After stroke, wildtype, heterozygous and CX3CR1 deficient mice did not show differences in the composite neuroscore and assessment of infarct volumes from CX3CR1 wildtype, heterozygous and deficient mice revealed no differences between the genotypes 7 and 14 days after stroke. CONCLUSION: Results demonstrate that CX3CR1 deficiency affects the morphology of GFP positive microglia located in the proximal peri-infarct region during the first 14 days after tMCAO. Our data also indicate that CX3CR1 deficiency does not affect definite infarct volumes. Modulation of the CX3CR1 pathway may have implication for microglia function contributing to mechanisms of tissue reorganization in the post-ischemic brain.


Assuntos
Microglia/metabolismo , Microglia/patologia , Receptores de Quimiocinas/deficiência , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Receptor 1 de Quimiocina CX3C , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Receptores de Quimiocinas/genética , Recuperação de Função Fisiológica/fisiologia , Fatores de Tempo
14.
Eur Stroke J ; 2(3): 229-237, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31008316

RESUMO

INTRODUCTION: Genome-wide association studies have identified several novel genetic loci associated with stroke risk, but how genetic factors influence stroke outcome is less studied. The Genetics of Ischaemic Stroke Functional outcome network aims at performing genetic studies of stroke outcome. We here describe the study protocol and methods basis of Genetics of Ischaemic Stroke Functional outcome. METHODS: The Genetics of Ischaemic Stroke Functional outcome network has assembled patients from 12 ischaemic stroke projects with genome-wide genotypic and outcome data from the International Stroke Genetics Consortium and the National Institute of Neurological Diseases Stroke Genetics Network initiatives. We have assessed the availability of baseline variables, outcome metrics and time-points for collection of outcome data. RESULTS: We have collected 8831 ischaemic stroke cases with genotypic and outcome data. Modified Rankin score was the outcome metric most readily available. We detected heterogeneity between cohorts for age and initial stroke severity (according to the NIH Stroke Scale), and will take this into account in analyses. We intend to conduct a first phase genome-wide association outcome study on ischaemic stroke cases with data on initial stroke severity and modified Rankin score within 60-190 days. To date, we have assembled 5762 such cases and are currently seeking additional cases meeting these criteria for second phase analyses. CONCLUSION: Genetics of Ischaemic Stroke Functional outcome is a unique collection of ischaemic stroke cases with detailed genetic and outcome data providing an opportunity for discovery of genetic loci influencing functional outcome. Genetics of Ischaemic Stroke Functional outcome will serve as an exploratory study where the results as well as the methodological observations will provide a basis for future studies on functional outcome. Genetics of Ischaemic Stroke Functional outcome can also be used for candidate gene replication or assessing stroke outcome non-genetic association hypotheses.

15.
Mol Neurobiol ; 53(6): 3513-3527, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26093381

RESUMO

GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the central nervous system, and changes in GABAergic neurotransmission modulate the activity of neuronal networks. Gephyrin is a scaffold protein responsible for the traffic and synaptic anchoring of GABAA receptors (GABAAR); therefore, changes in gephyrin expression and oligomerization may affect the activity of GABAergic synapses. In this work, we investigated the changes in gephyrin protein levels during brain ischemia and in excitotoxic conditions, which may affect synaptic clustering of GABAAR. We found that gephyrin is cleaved by calpains following excitotoxic stimulation of hippocampal neurons with glutamate, as well as after intrahippocampal injection of kainate, giving rise to a stable cleavage product. Gephyrin cleavage was also observed in cultured hippocampal neurons subjected to transient oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, and after transient middle cerebral artery occlusion (MCAO) in mice, a model of focal brain ischemia. Furthermore, a truncated form of gephyrin decreased the synaptic clustering of the protein, reduced the synaptic pool of GABAAR containing γ2 subunits and upregulated OGD-induced cell death in hippocampal cultures. Our results show that excitotoxicity and brain ischemia downregulate full-length gephyrin with a concomitant generation of truncated products, which affect synaptic clustering of GABAAR and cell death.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Receptores de GABA-A/metabolismo , Animais , Calpaína/metabolismo , Morte Celular , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Glucose/deficiência , Ácido Glutâmico/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Neurotoxinas/toxicidade , Oxigênio , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
16.
J Neuroinflammation ; 12: 24, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25881123

RESUMO

BACKGROUND: Recovery of lost neurological function after stroke is limited and dependent on multiple mechanisms including inflammatory processes. Selective pharmacological modulation of inflammation might be a promising approach to improve stroke outcome. METHODS: We used 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (AMD3100), an antagonist to the C-X-C chemokine receptor type 4 (CXCR4) and potential allosteric agonist to CXCR7, administered to mice twice daily from day 2 after induction of photothrombosis (PT). In addition to functional outcome, the dynamics of post-stroke microglia response were monitored in vivo by 2-photon-laser-microscopy in heterozygous transgenic CX3CR1-green fluorescent protein (GFP) mice (CX3CR1(GFP/+)) and complemented with analyses for fractalkine (FKN) and pro-inflammatory cytokines. RESULTS: We found a significantly enhanced recovery and modified microglia activation without affecting infarct size in mice treated with AMD3100 after PT. AMD3100 treatment significantly reduced the number of microglia in the peri-infarct area accompanied by stabilization of soma size and ramified cell morphology. Within the ischemic infarct core of AMD3100 treated wild-type mice we obtained significantly reduced levels of the endogenous CX3CR1 ligand FKN and the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6. Interestingly, in CX3CR1-deficient mice (homozygous transgenic CX3CR1-GFP mice) subjected to PT, the levels of FKN were significantly lower compared to their wild-type littermates. Moreover, AMD3100 treatment did not induce any relevant changes of cytokine levels in CX3CR1 deficient mice. CONCLUSION: After AMD3100 treatment, attenuation of microglia activation contributes to enhanced recovery of lost neurological function in experimental stroke possibly due to a depression of FKN levels in the brain. We further hypothesize that this mechanism is dependent on a functional receptor CX3CR1.


Assuntos
Citocinas/metabolismo , Compostos Heterocíclicos/uso terapêutico , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Animais , Benzilaminas , Infarto Encefálico/etiologia , Infarto Encefálico/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Ciclamos , Citocinas/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Fótons/efeitos adversos , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Acidente Vascular Cerebral/complicações
17.
J Pharmacol Sci ; 127(1): 30-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25704015

RESUMO

The sigma-1 receptor (Sig-1R) is a single 25 kD polypeptide and a chaperone protein immersed in lipid rafts of the endoplasmic reticulum (ER) where it interacts with mitochondria at the mitochondria-associated ER membrane domain (MAM). Upon activation, the Sig-1R binds to the inositol trisphosphate receptor (IP3R), and modulates cellular calcium (Ca(2+)) homeostasis. Also, the activated Sig-1R modulates plasma membrane receptor and ion channel functions, and may regulate cellular excitability. Further, the Sig-1R promotes trafficking of lipids and proteins essential for neurotransmission, cell growth and motility. Activation of the Sig-1R provides neuroprotection and is neurorestorative in cellular and animal models of neurodegenerative diseases and brain ischaemia. Neuroprotection appears to be due to inhibition of cellular Ca(2+) toxicity and/or inflammation, and neurorestoration may include balancing abberant neurotransmission or stimulation of synaptogenesis, thus remodelling brain connectivity. Single nucleotide polymorphisms and mutations of the SIGMAR1 gene worsen outcome in Alzheimer's disease and myotrophic lateral sclerosis supporting a role of Sig-1R in neurodegenerative disease. The combined neuroprotective and neurorestorative actions of the Sig-1R, provide a broad therapeutic time window of Sig-1R agonists. The Sig-1R is therefore a strong therapeutic target for the development of new treatments for neurodegenerative diseases and stroke.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/agonistas , Receptores sigma/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Humanos , Modelos Neurológicos , Mutação , Regeneração Nervosa/fisiologia , Receptores sigma/genética , Receptor Sigma-1
18.
BMC Neurol ; 14: 191, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25261976

RESUMO

BACKGROUND: In experimental studies, the apolipoprotein D (APOD) and the sigma receptor type 1 (SIGMAR1) have been related to processes of brain damage, repair and plasticity. METHODS: We examined blood samples from 3081 ischemic stroke (IS) patients and 1595 control subjects regarding 10 single nucleotide polymorphisms (SNPs) in the APOD (chromosomal location 3q29) and SIGMAR1 (chromosomal location 9p13) genes to find possible associations with IS risk, IS severity (NIHSS-score) and recovery after IS (modified Rankin Scale, mRS, at 90 days). Simple/multiple logistic regression and Spearman's rho were utilized for the analyses. RESULTS: Among the SNPs analyzed, rs7659 within the APOD gene showed a possible association with stroke risk (OR = 1.12; 95% CI: 1.01-1.25; P = 0.029) and stroke severity (NIHSS ≥ 16) (OR = 0.70; 95% CI: 0.54-0.92; P = 0.009) when controlling for age, sex and vascular risk factors for stroke. No SNP showed an association with stroke recovery (mRS). CONCLUSIONS: We conclude that the SNP rs7659 within the APOD gene might be related to risk and severity of ischemic stroke in patients.


Assuntos
Apolipoproteínas D/genética , Isquemia Encefálica/genética , Receptores sigma/genética , Sistema de Registros/estatística & dados numéricos , Acidente Vascular Cerebral/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Recuperação de Função Fisiológica , Risco , Índice de Gravidade de Doença , Acidente Vascular Cerebral/epidemiologia , Suécia/epidemiologia , Adulto Jovem , Receptor Sigma-1
19.
Neuroimage ; 97: 363-73, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24742916

RESUMO

Imaging techniques that provide detailed insights into structural tissue changes after stroke can vitalize development of treatment strategies and diagnosis of disease. Diffusion-weighted MRI has been playing an important role in this regard. Diffusion kurtosis imaging (DKI), a recent addition to this repertoire, has opened up further possibilities in extending our knowledge about structural tissue changes related to injury as well as plasticity. In this study we sought to discern the microstructural alterations characterized by changes in diffusion tensor imaging (DTI) and DKI parameters at a chronic time point after experimental stroke. Of particular interest was the question of whether DKI parameters provide additional information in comparison to DTI parameters in understanding structural tissue changes, and if so, what their histological origins could be. Region-of-interest analysis and a data-driven approach to identify tissue abnormality were adopted to compare DTI- and DKI-based parameters in post mortem rat brain tissue, which were compared against immunohistochemistry of various cellular characteristics. The unilateral infarcted area encompassed the ventrolateral cortex and the lateral striatum. Results from region-of-interest analysis in the lesion borderzone and contralateral tissue revealed significant differences in DTI and DKI parameters between ipsi- and contralateral sensorimotor cortex, corpus callosum, internal capsule and striatum. This was reflected by a significant reduction in ipsilateral mean diffusivity (MD) and fractional anisotropy (FA) values, accompanied by significant increases in kurtosis parameters in these regions. Data-driven analysis to identify tissue abnormality revealed that the use of kurtosis-based parameters improved the detection of tissue changes in comparison with FA and MD, both in terms of dynamic range and in being able to detect changes to which DTI parameters were insensitive. This was observed in gray as well as white matter. Comparison against immunohistochemical stainings divulged no straightforward correlation between diffusion-based parameters and individual neuronal, glial or inflammatory tissue features. Our study demonstrates that DKI allows sensitive detection of structural tissue changes that reflect post-stroke tissue remodeling. However, our data also highlights the generic difficulty in unambiguously asserting specific causal relationships between tissue status and MR diffusion parameters.


Assuntos
Encéfalo/patologia , Encéfalo/ultraestrutura , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Acidente Vascular Cerebral/patologia , Animais , Mapeamento Encefálico , Interpretação Estatística de Dados , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/patologia , Masculino , Ratos
20.
Brain ; 137(Pt 7): 1998-2014, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24755275

RESUMO

The sigma-1 receptor, an endoplasmic reticulum-associated molecular chaperone, is attracting great interest as a potential target for neuroprotective treatments. We provide the first evidence that pharmacological modulation of this protein produces functional neurorestoration in experimental parkinsonism. Mice with intrastriatal 6-hydroxydopamine lesions were treated daily with the selective sigma-1 receptor agonist, PRE-084, for 5 weeks. At the dose of 0.3 mg/kg/day, PRE-084 produced a gradual and significant improvement of spontaneous forelimb use. The behavioural recovery was paralleled by an increased density of dopaminergic fibres in the most denervated striatal regions, by a modest recovery of dopamine levels, and by an upregulation of neurotrophic factors (BDNF and GDNF) and their downstream effector pathways (extracellular signal regulated kinases 1/2 and Akt). No treatment-induced behavioural-histological restoration occurred in sigma-1 receptor knockout mice subjected to 6-hydroxydopamine lesions and treated with PRE-084. Immunoreactivity for the sigma-1 receptor protein was evident in both astrocytes and neurons in the substantia nigra and the striatum, and its intracellular distribution was modulated by PRE-084 (the treatment resulted in a wider intracellular distribution of the protein). Our results suggest that sigma-1 receptor regulates endogenous defence and plasticity mechanisms in experimental parkinsonism. Boosting the activity of this protein may have disease-modifying effects in Parkinson's disease.


Assuntos
Antiparkinsonianos/uso terapêutico , Morfolinas/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Receptores sigma/fisiologia , Adrenérgicos/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Desempenho Psicomotor/efeitos dos fármacos , Receptores sigma/deficiência , Serotonina/metabolismo , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...