Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 167: 105554, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35526677

RESUMO

Staphylococcus aureus (SA) is a gram-positive coccus and an opportunistic pathogen of humans. The ability of SA to form biofilms is an important virulence mechanism because biofilms are protected from host immune responses and antibiotic treatment. This study examines the relative biofilm strength of a variety of hospital and meat-associated strains of SA, using a crystal violet (CV) staining assay. Biofilms were treated with either DNase or proteinase K prior to CV staining, and compared to mock-treated results, to better understand the biochemical composition. Biofilm polysaccharide concentration was also measured using the phenol sulfuric-acid assay which was normalized to base biofilm strength. We found that hospital-associated isolates have biofilms that bind significantly more CV than for meat isolates and are significantly more protein and polysaccharide-based while meat isolates have significantly more DNA-based biofilms. This study also investigates the effects that biofilm-related genes have on biofilm formation and composition by analyzing specific transposon mutants of genes previously shown to play a role in biofilm development. agrA, atl, clfA, fnbA, purH, and sarA mutants produce significantly weaker biofilms (bind less CV) as compared to a wild-type control, whereas the acnA mutant produces a significantly stronger biofilm. Biofilms formed from these mutant strains were treated (or mock-treated) with DNase or proteinase K and tested with phenol and sulfuric acid to determine what role these genes play in biofilm composition. The acnA, clfA, fnbA, and purH mutants showed significant reduction in biofilm staining after either proteinase K or DNase treatment, agrA and sarA mutants showed significant biofilm reduction after only proteinase K treatment, and an atl mutant did not show significant biofilm reduction after either proteinase K or DNase treatment. These data suggest that biofilms that form without acnA, clfA, fnbA, and purH are DNA- and protein-based, that biofilms lacking agrA and sarA are mainly protein-based, and biofilms lacking atl are mainly polysaccharide-based. These results help to elucidate how these genes affect biofilm formation and demonstrate how mutating biofilm-related genes in SA can cause a change in biofilm composition.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Biofilmes , Desoxirribonucleases/farmacologia , Endopeptidase K/farmacologia , Violeta Genciana , Hospitais , Humanos , Carne , Fenóis/farmacologia
2.
PLoS One ; 13(12): e0206712, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532208

RESUMO

The frequent use of antibiotics contributes to antibiotic resistance in bacteria, resulting in an increase in infections that are difficult to treat. Livestock are commonly administered antibiotics in their feed, but there is current interest in raising animals that are only administered antibiotics during active infections. Staphylococcus aureus (SA) is a common pathogen of both humans and livestock raised for human consumption. SA has achieved high levels of antibiotic resistance, but the origins and locations of resistance selection are poorly understood. We determined the prevalence of SA and MRSA in conventional and antibiotic-free (AF) meat products, and also measured rates of antibiotic resistance in these isolates. We isolated SA from raw conventional turkey, chicken, beef, and pork samples and also from AF chicken and turkey samples. We found that SA contamination was common, with an overall prevalence of 22.6% (range of 2.8-30.8%) in conventional meats and 13.0% (range of 12.5-13.2%) in AF poultry meats. MRSA was isolated from 15.7% of conventional raw meats (range of 2.8-20.4%) but not from AF-free meats. The degree of antibiotic resistance in conventional poultry products was significantly higher vs AF poultry products for a number of different antibiotics, and while multi-drug resistant strains were relatively common in conventional meats none were detected in AF meats. The use of antibiotics in livestock contributes to high levels of antibiotic resistance in SA found in meat products. Our results support the use of AF conditions for livestock in order to prevent antibiotic resistance development in SA.


Assuntos
Farmacorresistência Bacteriana , Microbiologia de Alimentos , Carne/microbiologia , Staphylococcus aureus Resistente à Meticilina , Aves Domésticas/microbiologia , Animais , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação
3.
PLoS One ; 13(7): e0200202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979759

RESUMO

Bacteriophages are a major force in the evolution of bacteria due to their sheer abundance as well as their ability to infect and kill their hosts and to transfer genetic material. Bacteriophages that infect the Enterobacteriaceae family are of particular interest because this bacterial family contains dangerous animal and plant pathogens. Herein we report the isolation and characterization of two jumbo myovirus Erwinia phages, RisingSun and Joad, collected from apple trees. These two genomes are nearly identical with Joad harboring two additional putative gene products. Despite mass spectrometry data that support the putative annotation, 43% of their gene products have no significant BLASTP hit. These phages are also more closely related to Pseudomonas and Vibrio phages than to published Enterobacteriaceae phages. Of the 140 gene products with a BLASTP hit, 81% and 63% of the closest hits correspond to gene products from Pseudomonas and Vibrio phages, respectively. This relatedness may reflect their ecological niche, rather than the evolutionary history of their host. Despite the presence of over 800 Enterobacteriaceae phages on NCBI, the uniqueness of these two phages highlights the diversity of Enterobacteriaceae phages still to be discovered.


Assuntos
Erwinia/virologia , Myoviridae/genética , Myoviridae/isolamento & purificação , Enterobacteriaceae/virologia , Genoma Viral , Especificidade de Hospedeiro , Malus/microbiologia , Malus/virologia , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Myoviridae/classificação , Proteoma/genética , Pseudomonas/virologia , Vibrio/virologia , Proteínas Virais/química , Proteínas Virais/genética
4.
PLoS One ; 10(7): e0131714, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26131892

RESUMO

Staphylococcus aureus (SA) is a commensal bacterium and opportunistic pathogen commonly associated with humans and is capable of causing serious disease and death including sepsis, pneumonia, and meningitis. Methicillin-resistant SA (MRSA) isolates are typically resistant to many available antibiotics with the common exception of vancomycin. The presence of vancomycin resistance in some SA isolates combined with the current heavy use of vancomycin to treat MRSA infections indicates that MRSA may achieve broad resistance to vancomycin in the near future. New MRSA treatments are clearly needed. Bacteriophages (phages) are viruses that infect bacteria, commonly resulting in death of the host bacterial cell. Phage therapy entails the use of phage to treat or prevent bacterial infections. In this study, 12 phages were isolated that can replicate in human SA and/or MRSA isolates as a potential way to control these infections. 5 phage were discovered through mitomycin C induction of prophage and 7 others as extracellular viruses. Primary SA strains were also isolated from environmental sources to be used as tools for phage discovery and isolation as well as to examine the target cell host range of the phage isolates by spot testing. Primary isolates were tested for susceptibility to oxacillin in order to determine which were MRSA. Experiments were performed to assess the host range and killing potential of newly discovered phage, and significant reductions in bacterial load were detected. We explored the utility of some phage to decontaminate fomites (glass and cloth) and found a significant reduction in colony forming units of MRSA following phage treatment, including tests of a phage cocktail against a cocktail of MRSA isolates. Our findings suggest that phage treatment can be used as an effective tool to decontaminate human MRSA from both hard surfaces and fabrics.


Assuntos
Bacteriófagos/patogenicidade , Especificidade de Hospedeiro , Staphylococcus aureus Resistente à Meticilina/virologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Desinfecção/métodos , Fômites/microbiologia , Fômites/virologia , Lisogenia , Ativação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...