Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(10): 2748-2765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511534

RESUMO

Social play behaviour is a rewarding activity that can entail risks, thus allowing young individuals to test the limits of their capacities and to train their cognitive and emotional adaptability to challenges. Here, we tested in rats how opportunities for risk-taking during play affect the development of cognitive and emotional capacities and medial prefrontal cortex (mPFC) function, a brain structure important for risk-based decision making. Male and female rats were housed socially or social play-deprived (SPD) between postnatal day (P)21 and P42. During this period, half of both groups were daily exposed to a high-risk play environment. Around P85, all rats were tested for cognitive performance and emotional behaviour after which inhibitory currents were recorded in layer 5 pyramidal neurons in mPFC slices. We show that playing in a high-risk environment altered cognitive flexibility in both sexes and improved behavioural inhibition in males. High-risk play altered anxiety-like behaviour in the elevated plus maze in males and in the open field in females, respectively. SPD affected cognitive flexibility in both sexes and decreased anxiety-like behaviour in the elevated plus maze in females. We found that synaptic inhibitory currents in the mPFC were increased in male, but not female, rats after high-risk play, while SPD lowered prefrontal cortex (PFC) synaptic inhibition in both sexes. Together, our data show that exposure to risks during play affects the development of cognition, emotional behaviour and inhibition in the mPFC. Furthermore, our study suggests that the opportunity to take risks during play cannot substitute for social play behaviour.


Assuntos
Cognição , Córtex Pré-Frontal , Assunção de Riscos , Animais , Córtex Pré-Frontal/fisiologia , Masculino , Feminino , Ratos , Cognição/fisiologia , Jogos e Brinquedos , Comportamento Social , Ansiedade/fisiopatologia , Células Piramidais/fisiologia , Emoções/fisiologia , Comportamento Animal/fisiologia
2.
Neurosci Biobehav Rev ; 154: 105398, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741516

RESUMO

Language is a complex multidimensional cognitive system that is connected to many neurocognitive capacities. The development of language is therefore strongly intertwined with the development of these capacities and their neurobiological substrates. Consequently, language problems, for example those of children with Developmental Language Disorder (DLD), are explained by a variety of etiological pathways and each of these pathways will be associated with specific risk factors. In this review, we attempt to link previously described factors that may interfere with language development to putative underlying neurobiological mechanisms of language development, hoping to uncover openings for future therapeutical approaches or interventions that can help children to optimally develop their language skills.


Assuntos
Transtornos do Desenvolvimento da Linguagem , Criança , Humanos , Transtornos do Desenvolvimento da Linguagem/etiologia , Transtornos do Desenvolvimento da Linguagem/psicologia , Desenvolvimento da Linguagem , Fatores de Risco
3.
J Neurosci ; 43(30): 5483-5500, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37438107

RESUMO

During the first two postnatal weeks, intraneuronal chloride concentrations in rodents gradually decrease, causing a shift from depolarizing to hyperpolarizing GABA responses. The postnatal GABA shift is delayed in rodent models for neurodevelopmental disorders and in human patients, but the impact of a delayed GABA shift on the developing brain remains obscure. Here we examine the direct and indirect consequences of a delayed postnatal GABA shift on network development in organotypic hippocampal cultures made from 6- to 7-d-old mice by treating the cultures for 1 week with VU0463271, a specific inhibitor of the chloride exporter KCC2. We verified that VU treatment delayed the GABA shift and kept GABA signaling depolarizing until DIV9. We found that the structural and functional development of excitatory and inhibitory synapses at DIV9 was not affected after VU treatment. In line with previous studies, we observed that GABA signaling was already inhibitory in control and VU-treated postnatal slices. Surprisingly, 14 d after the VU treatment had ended (DIV21), we observed an increased frequency of spontaneous inhibitory postsynaptic currents in CA1 pyramidal cells, while excitatory currents were not changed. Synapse numbers and release probability were unaffected. We found that dendrite-targeting interneurons in the stratum radiatum had an elevated resting membrane potential, while pyramidal cells were less excitable compared with control slices. Our results show that depolarizing GABA signaling does not promote synapse formation after P7, and suggest that postnatal intracellular chloride levels indirectly affect membrane properties in a cell-specific manner.SIGNIFICANCE STATEMENT During brain development, the action of neurotransmitter GABA shifts from depolarizing to hyperpolarizing. This shift is a thought to play a critical role in synapse formation. A delayed shift is common in rodent models for neurodevelopmental disorders and in human patients, but its consequences for synaptic development remain obscure. Here, we delayed the GABA shift by 1 week in organotypic hippocampal cultures and carefully examined the consequences for circuit development. We find that delaying the shift has no direct effects on synaptic development, but instead leads to indirect, cell type-specific changes in membrane properties. Our data call for careful assessment of alterations in cellular excitability in neurodevelopmental disorders.


Assuntos
Cloretos , Hipocampo , Animais , Camundongos , Humanos , Cloretos/metabolismo , Hipocampo/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , Transmissão Sináptica/fisiologia
4.
Cereb Cortex ; 33(15): 9399-9408, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37317037

RESUMO

Experience-dependent organization of neuronal connectivity is critical for brain development. We recently demonstrated the importance of social play behavior for the developmental fine-tuning of inhibitory synapses in the medial prefrontal cortex in rats. When these effects of play experience occur and if this happens uniformly throughout the prefrontal cortex is currently unclear. Here we report important temporal and regional heterogeneity in the impact of social play on the development of excitatory and inhibitory neurotransmission in the medial prefrontal cortex and the orbitofrontal cortex. We recorded in layer 5 pyramidal neurons from juvenile (postnatal day (P)21), adolescent (P42), and adult (P85) rats after social play deprivation (between P21 and P42). The development of these prefrontal cortex subregions followed different trajectories. On P21, inhibitory and excitatory synaptic input was higher in the orbitofrontal cortex than in the medial prefrontal cortex. Social play deprivation did not affect excitatory currents, but reduced inhibitory transmission in both medial prefrontal cortex and orbitofrontal cortex. Intriguingly, the reduction occurred in the medial prefrontal cortex during social play deprivation, whereas the reduction in the orbitofrontal cortex only became manifested after social play deprivation. These data reveal a complex interaction between social play experience and the specific developmental trajectories of prefrontal subregions.


Assuntos
Neurônios , Transmissão Sináptica , Ratos , Animais , Transmissão Sináptica/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia
6.
J Neurosci ; 42(46): 8716-8728, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36253083

RESUMO

Sensory driven activity during early life is critical for setting up the proper connectivity of the sensory cortices. We ask here whether social play behavior, a particular form of social interaction that is highly abundant during postweaning development, is equally important for setting up connections in the developing prefrontal cortex (PFC). Young male rats were deprived from social play with peers during the period in life when social play behavior normally peaks [postnatal day 21-42] (SPD rats), followed by resocialization until adulthood. We recorded synaptic currents in layer 5 cells in slices from medial PFC of adult SPD and control rats and observed that inhibitory synaptic currents were reduced in SPD slices, while excitatory synaptic currents were unaffected. This was associated with a decrease in perisomatic inhibitory synapses from parvalbumin-positive GABAergic cells. In parallel experiments, adult SPD rats achieved more reversals in a probabilistic reversal learning (PRL) task, which depends on the integrity of the PFC, by using a more simplified cognitive strategy than controls. Interestingly, we observed that one daily hour of play during SPD partially rescued the behavioral performance in the PRL, but did not prevent the decrease in PFC inhibitory synaptic inputs. Our data demonstrate the importance of unrestricted social play for the development of inhibitory synapses in the PFC and cognitive skills in adulthood and show that specific synaptic alterations in the PFC can result in a complex behavioral outcome.SIGNIFICANCE STATEMENT This study addressed the question whether social play behavior in juvenile rats contributes to functional development of the prefrontal cortex (PFC). We found that rats that had been deprived from juvenile social play (social play deprivation - SPD) showed a reduction in inhibitory synapses in the PFC and a simplified strategy to solve a complex behavioral task in adulthood. Providing one daily hour of play during SPD partially rescued the cognitive skills in these rats, but did not prevent the reduction in PFC inhibitory synapses. Our results demonstrate a key role for unrestricted juvenile social play in PFC development and emphasize the complex relation between PFC circuit connectivity and cognitive function.


Assuntos
Córtex Pré-Frontal , Sinapses , Ratos , Masculino , Animais , Sinapses/metabolismo , Córtex Pré-Frontal/metabolismo , Parvalbuminas/metabolismo , Cognição , Neurogênese
7.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36635254

RESUMO

Intraneuronal chloride concentrations ([Cl-]i) decrease during development resulting in a shift from depolarizing to hyperpolarizing GABA responses via chloride-permeable GABAA receptors. This GABA shift plays a pivotal role in postnatal brain development, and can be strongly influenced by early life experience. Here, we assessed the applicability of the recently developed fluorescent SuperClomeleon (SClm) sensor to examine changes in [Cl-]i using two-photon microscopy in brain slices. We used SClm mice of both sexes to monitor the developmental decrease in neuronal chloride levels in organotypic hippocampal cultures. We could discern a clear reduction in [Cl-]i between day in vitro (DIV)3 and DIV9 (equivalent to the second postnatal week in vivo) and a further decrease in some cells until DIV22. In addition, we assessed alterations in [Cl-]i in the medial prefrontal cortex (mPFC) of postnatal day (P)9 male SClm mouse pups after early life stress (ELS). ELS was induced by limiting nesting material between P2 and P9. ELS induced a shift toward higher (i.e., immature) chloride levels in layer 2/3 cells in the mPFC. Although conversion from SClm fluorescence to absolute chloride concentrations proved difficult, our study underscores that the SClm sensor is a powerful tool to measure physiological changes in [Cl-]i in brain slices.


Assuntos
Cloretos , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Cloretos/metabolismo , Ácido gama-Aminobutírico/farmacologia , Neurônios/fisiologia , Receptores de GABA-A
8.
J Neurosci ; 41(40): 8279-8296, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34413209

RESUMO

Experience-dependent formation and removal of inhibitory synapses are essential throughout life. For instance, GABAergic synapses are removed to facilitate learning, and strong excitatory activity is accompanied by the formation of inhibitory synapses to maintain coordination between excitation and inhibition. We recently discovered that active dendrites trigger the growth of inhibitory synapses via CB1 receptor-mediated endocannabinoid signaling, but the underlying mechanism remained unclear. Using two-photon microscopy to monitor the formation of individual inhibitory boutons in hippocampal organotypic slices from mice (both sexes), we found that CB1 receptor activation mediated the formation of inhibitory boutons and promoted their subsequent stabilization. Inhibitory bouton formation did not require neuronal activity and was independent of Gi/o-protein signaling, but was directly induced by elevating cAMP levels using forskolin and by activating Gs-proteins using DREADDs. Blocking PKA activity prevented CB1 receptor-mediated inhibitory bouton formation. Our findings reveal that axonal CB1 receptors signal via unconventional downstream pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels. Our results demonstrate an unexpected role for axonal CB1 receptors in axon-specific, and context-dependent, inhibitory synapse formation.SIGNIFICANCE STATEMENT Coordination between excitation and inhibition is required for proper brain function throughout life. It was previously shown that new inhibitory synapses can be formed in response to strong excitation to maintain this coordination, and this was mediated by endocannabinoid signaling via CB1 receptors. As activation of CB1 receptors generally results in the suppression of synaptic transmission, it remained unclear how CB1 receptors can mediate the formation of inhibitory synapses. Here we show that CB1 receptors on inhibitory axons signal via unconventional intracellular pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels and requires PKA activity. Our findings point to a central role for axonal cAMP signaling in activity-dependent inhibitory synapse formation.


Assuntos
Axônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Axônios/química , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Feminino , Hipocampo/química , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/química , Receptor CB1 de Canabinoide/genética , Imagem com Lapso de Tempo/métodos
9.
J Alzheimers Dis Rep ; 5(1): 153-160, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33981952

RESUMO

The amyloid-ß protein precursor is highly expressed in a subset of inhibitory neuron in the hippocampus, and inhibitory neurons have been suggested to play an important role in early Alzheimer's disease plaque load. Here we investigated bouton dynamics in axons of hippocampal interneurons in two independent amyloidosis models. Short-term (24 h) amyloid-ß (Aß)-oligomer application to organotypic hippocampal slices slightly increased inhibitory bouton dynamics, but bouton density and dynamics were unchanged in hippocampus slices of young-adult App NL - F - G -mice, in which Aß levels are chronically elevated. These results indicate that loss or defective adaptation of inhibitory synapses are not a major contribution to Aß-induced hyperexcitability.

10.
EMBO J ; 40(10): e106798, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33835529

RESUMO

Axon formation critically relies on local microtubule remodeling and marks the first step in establishing neuronal polarity. However, the function of the microtubule-organizing centrosomes during the onset of axon formation is still under debate. Here, we demonstrate that centrosomes play an essential role in controlling axon formation in human-induced pluripotent stem cell (iPSC)-derived neurons. Depleting centrioles, the core components of centrosomes, in unpolarized human neuronal stem cells results in various axon developmental defects at later stages, including immature action potential firing, mislocalization of axonal microtubule-associated Trim46 proteins, suppressed expression of growth cone proteins, and affected growth cone morphologies. Live-cell imaging of microtubules reveals that centriole loss impairs axonal microtubule reorganization toward the unique parallel plus-end out microtubule bundles during early development. We propose that centrosomes mediate microtubule remodeling during early axon development in human iPSC-derived neurons, thereby laying the foundation for further axon development and function.


Assuntos
Axônios/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Microtúbulos/metabolismo , Centrossomo/metabolismo , Humanos , Neurônios/metabolismo
11.
Neurosci Biobehav Rev ; 124: 179-192, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549742

RESUMO

GABA is the major inhibitory neurotransmitter that counterbalances excitation in the mature brain. The inhibitory action of GABA relies on the inflow of chloride ions (Cl-), which hyperpolarizes the neuron. In early development, GABA signaling induces outward Cl- currents and is depolarizing. The postnatal shift from depolarizing to hyperpolarizing GABA is a pivotal event in brain development and its timing affects brain function throughout life. Altered timing of the postnatal GABA shift is associated with several neurodevelopmental disorders. Here, we argue that the postnatal shift from depolarizing to hyperpolarizing GABA represents the final shift in a sequence of GABA shifts, regulating proliferation, migration, differentiation, and finally plasticity of developing neurons. Each developmental GABA shift ensures that the instructive role of GABA matches the circumstances of the developing network. Sensory input may be a crucial factor in determining proper timing of the postnatal GABA shift. A developmental perspective is necessary to interpret the full consequences of a mismatch between connectivity, activity and GABA signaling during brain development.


Assuntos
Neurônios , Ácido gama-Aminobutírico , Encéfalo , Cloretos , Humanos
12.
Curr Opin Neurobiol ; 67: 34-41, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32853970

RESUMO

Coordinated excitatory and inhibitory activity is required for proper brain functioning. Recent computational and experimental studies have demonstrated that activity patterns in recurrent cortical networks are dominated by inhibition. Whereas previous studies have suggested that inhibitory plasticity is important for homeostatic control, this new framework puts inhibition in the driver's seat. Complex neuronal networks in the brain comprise many configurations in parallel, controlled by external and internal 'switches'. Context-dependent modulation and plasticity of inhibitory connections play a key role in memory and learning. It is therefore important to realize that synaptic plasticity is often multisynaptic and that a proper balance between excitation and inhibition is not fixed, but depends on context and activity level.


Assuntos
Inibição Neural , Plasticidade Neuronal , Aprendizagem , Memória , Neurônios , Sinapses
13.
J Alzheimers Dis ; 78(3): 951-964, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33074225

RESUMO

BACKGROUND: In an early stage of Alzheimer's disease (AD), before the formation of amyloid plaques, neuronal network hyperactivity has been reported in both patients and animal models. This suggests an underlying disturbance of the balance between excitation and inhibition. Several studies have highlighted the role of somatic inhibition in early AD, while less is known about dendritic inhibition. OBJECTIVE: In this study we investigated how inhibitory synaptic currents are affected by elevated Aß levels. METHODS: We performed whole-cell patch clamp recordings of CA1 pyramidal neurons in organotypic hippocampal slice cultures after treatment with Aß-oligomers and in hippocampal brain slices from AppNL-F-G mice (APP-KI). RESULTS: We found a reduction of spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons in organotypic slices after 24 h Aß treatment. sIPSCs with slow rise times were reduced, suggesting a specific loss of dendritic inhibitory inputs. As miniature IPSCs and synaptic density were unaffected, these results suggest a decrease in activity-dependent transmission after Aß treatment. We observed a similar, although weaker, reduction in sIPSCs in CA1 pyramidal neurons from APP-KI mice compared to control. When separated by sex, the strongest reduction in sIPSC frequency was found in slices from male APP-KI mice. Consistent with hyperexcitability in pyramidal cells, dendritically targeting interneurons received slightly more excitatory input. GABAergic action potentials had faster kinetics in APP-KI slices. CONCLUSION: Our results show that Aß affects dendritic inhibition via impaired action potential driven release, possibly due to altered kinetics of GABAergic action potentials. Reduced dendritic inhibition may contribute to neuronal hyperactivity in early AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Dendritos/metabolismo , Potenciais Pós-Sinápticos Inibidores/genética , Fragmentos de Peptídeos/metabolismo , Células Piramidais/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Amiloidose , Animais , Região CA1 Hipocampal/citologia , Dendritos/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos
14.
Elife ; 92020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32940601

RESUMO

The differentiation of neuronal stem cells into polarized neurons is a well-coordinated process which has mostly been studied in classical non-human model systems, but to what extent these findings are recapitulated in human neurons remains unclear. To study neuronal polarization in human neurons, we cultured hiPSC-derived neurons, characterized early developmental stages, measured electrophysiological responses, and systematically profiled transcriptomic and proteomic dynamics during these steps. The neuron transcriptome and proteome shows extensive remodeling, with differential expression profiles of ~1100 transcripts and ~2200 proteins during neuronal differentiation and polarization. We also identified a distinct axon developmental stage marked by the relocation of axon initial segment proteins and increased microtubule remodeling from the distal (stage 3a) to the proximal (stage 3b) axon. This developmental transition coincides with action potential maturation. Our comprehensive characterization and quantitative map of transcriptome and proteome dynamics provides a solid framework for studying polarization in human neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Proteoma/metabolismo , Transcriptoma/fisiologia , Potenciais de Ação/fisiologia , Segmento Inicial do Axônio/metabolismo , Polaridade Celular/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Proteoma/análise
15.
Front Cell Neurosci ; 13: 496, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780899

RESUMO

The most commonly studied form of synaptic plasticity is long-term potentiation (LTP). Over the last 15 years, it has been possible to induce structural and functional LTP in dendritic spines using two-photon glutamate uncaging, allowing for studying the signaling mechanisms of LTP with single synapse resolution. In this review, we compare different stimulation methods to induce single synapse LTP and discuss how LTP is expressed. We summarize the underlying signaling mechanisms that have been studied with high spatiotemporal resolution. Finally, we discuss how LTP in a single synapse can be affected by excitatory and inhibitory synapses nearby. We argue that single synapse LTP is highly dependent on context: the choice of induction method, the history of the dendritic spine and the dendritic vicinity crucially affect signaling pathways and expression of single synapse LTP.

16.
Cell Rep ; 27(3): 666-675.e5, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995465

RESUMO

Dendritic inhibitory synapses are most efficient in modulating excitatory inputs localized on the same dendrite, but it is unknown whether their location is random or regulated. Here, we show that the formation of inhibitory synapses can be directed by excitatory synaptic activity on the same dendrite. We stimulated dendritic spines close to a GABAergic axon crossing by pairing two-photon glutamate uncaging with postsynaptic depolarization in CA1 pyramidal cells. We found that repeated spine stimulation promoted growth of a GABAergic bouton onto the same dendrite. The dendritic feedback signal required postsynaptic activation of DAGL, which produces the endocannabinoid 2-AG, and was mediated by CB1 receptors. We could also induce inhibitory bouton growth by local, brief applications of 2-AG. Our findings reveal a dendritic signaling mechanism to trigger growth of an inhibitory bouton at dendritic locations with strong excitatory synaptic activity, and this mechanism may serve to ensure inhibitory control over clustered excitatory inputs.


Assuntos
Dendritos/fisiologia , Endocanabinoides/metabolismo , Sinapses/fisiologia , Animais , Axônios/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Ácido Glutâmico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Células Piramidais/fisiologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
17.
J Neurosci ; 39(22): 4221-4237, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30914448

RESUMO

Changes in inhibitory connections are essential for experience-dependent circuit adaptations. Defects in inhibitory synapses are linked to neurodevelopmental disorders, but the molecular processes underlying inhibitory synapse formation are not well understood. Here we use high-resolution two-photon microscopy in organotypic hippocampal slices from GAD65-GFP mice of both sexes to examine the signaling pathways induced by the postsynaptic signaling molecule Semaphorin4D (Sema4D) during inhibitory synapse formation. By monitoring changes in individual GFP-labeled presynaptic boutons, we found that the primary action of Sema4D is to induce stabilization of presynaptic boutons within tens of minutes. Stabilized boutons rapidly recruited synaptic vesicles, followed by accumulation of postsynaptic gephyrin and were functional after 24 h, as determined by electrophysiology and immunohistochemistry. Inhibitory boutons are only sensitive to Sema4D at a specific stage during synapse formation and sensitivity to Sema4D is regulated by network activity. We further examined the intracellular signaling cascade triggered by Sema4D and found that bouton stabilization occurs through rapid remodeling of the actin cytoskeleton. This could be mimicked by the actin-depolymerizing drug latrunculin B or by reducing ROCK activity. We discovered that the intracellular signaling cascade requires activation of the receptor tyrosine kinase MET, which is a well known autism risk factor. By using a viral approach to reduce MET levels specifically in inhibitory neurons, we found that their axons are no longer sensitive to Sema4D signaling. Together, our data yield important insights into the molecular pathway underlying activity-dependent Sema4D-induced synapse formation and reveal a novel role for presynaptic MET at inhibitory synapses.SIGNIFICANCE STATEMENT GABAergic synapses provide the main inhibitory control of neuronal activity in the brain. We wanted to unravel the sequence of molecular events that take place when formation of inhibitory synapses is triggered by a specific signaling molecule, Sema4D. We find that this signaling pathway depends on network activity and involves specific remodeling of the intracellular actin cytoskeleton. We also reveal a previously unknown role for MET at inhibitory synapses. Our study provides novel insights into the dynamic process of inhibitory synapse formation. As defects in GABAergic synapses have been implied in many brain disorders, and mutations in MET are strong risk factors for autism, our findings urge for a further investigation of the role of MET at inhibitory synapses.


Assuntos
Antígenos CD/metabolismo , Neurogênese/fisiologia , Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Semaforinas/metabolismo , Sinapses/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Técnicas de Cultura de Órgãos
18.
Neurosci Biobehav Rev ; 95: 421-429, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273634

RESUMO

Play is of vital importance for the healthy development of children. From a developmental perspective, play offers ample physical, emotional, cognitive, and social benefits. It allows children and adolescents to develop motor skills, experiment with their (social) behavioural repertoire, simulate alternative scenarios, and address the various positive and negative consequences of their behaviour in a safe and engaging context. Children with a chronic or life-threatening disease may face obstacles that negatively impact play and play development, possibly impeding developmental milestones, beyond the actual illness itself. Currently, there is limited understanding of the impact of (1) aberrant or suppressed play and (2) play-related interventions on the development of chronic diseased children. We argue that stimulating play behaviour enhances the adaptability of a child to a (chronic) stressful condition and promotes cognitive, social, emotional and psychomotor functioning, thereby strengthening the basis for their future health. Systematic play research will help to develop interventions for young patients, to better cope with the negative consequences of their illness and stimulate healthy development.


Assuntos
Adaptação Psicológica , Doença Crônica/psicologia , Jogos e Brinquedos/psicologia , Animais , Criança , Desenvolvimento Infantil , Humanos , Psicologia da Criança
19.
Cell Rep ; 24(8): 2063-2074, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134168

RESUMO

During development, activity-dependent synaptic plasticity refines neuronal networks with high precision. For example, spontaneous activity helps sorting synaptic inputs with similar activity patterns into clusters to enhance neuronal computations in the mature brain. Here, we show that TrkB activation and postsynaptic brain-derived neurotrophic factor (BDNF) are required for synaptic clustering in developing hippocampal neurons. Moreover, BDNF and TrkB modulate transmission at synapses depending on their clustering state, indicating that endogenous BDNF/TrkB signaling stabilizes locally synchronized synapses. Together with our previous data on proBDNF/p75NTR signaling, these findings suggest a push-pull plasticity mechanism for synaptic clustering: BDNF stabilizes clustered synapses while proBDNF downregulates out-of-sync synapses. This idea is supported by our observation that synaptic clustering requires matrix-metalloproteinase-9 activity, a proBDNF-to-BDNF converting enzyme. Finally, NMDA receptor activation mediates out-of-sync depression upstream of proBDNF signaling. Together, these data delineate an efficient plasticity mechanism where proBDNF and mature BDNF establish synaptic clustering through antagonistic modulation of synaptic transmission.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Animais , Camundongos
20.
Curr Biol ; 28(13): 2081-2093.e6, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29910073

RESUMO

In neurons, microtubules form dense bundles and run along the length of axons and dendrites. Occasionally, dendritic microtubules can grow from the shaft directly into dendritic spines. Microtubules target dendritic spines that are undergoing activity-dependent changes, but the mechanism by which microtubules enter spines has remained poorly understood. Using live-cell imaging, high-resolution microscopy, and local glutamate uncaging, we show that local actin remodeling at the base of a spine promotes microtubule spine targeting. Microtubule spine entry is triggered by activation of N-Methyl-D-aspartic acid (NMDA) receptors and calcium influx and requires dynamic actin remodeling. Activity-dependent translocation of the actin remodeling protein cortactin out of the spine correlates with increased microtubule targeting at a single spine level. Our data show that the structural changes in the actin cytoskeleton at the base of the spine are directly involved in microtubule entry and emphasize the importance of actin-microtubule crosstalk in orchestrating synapse function and plasticity.


Assuntos
Actinas/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/fisiologia , Microtúbulos/metabolismo , Neurônios/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...