Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Cancer Genet ; 260-261: 46-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929613

RESUMO

INTRODUCTION: NTRK gene fusions are targetable oncogenic drivers independent of tumor type. Prevalence varies from highly recurrent in certain rare tumors to <1% in common cancers. The selective TRK inhibitor larotrectinib was shown to be highly active in adult and pediatric patients with tumors harboring NTRK gene fusions. METHODS: We examined the techniques used by local sites to detect tumor NTRK gene fusions in patients enrolled in clinical trials of larotrectinib. We also report the characteristics of the detected fusions in different tumor types. RESULTS: The analysis included 225 patients with 19 different tumor types. Testing methods used were next-generation sequencing (NGS) in 196 of 225 tumors (87%); this was RNA-based in 96 (43%); DNA-based in 53 (24%); DNA/RNA-based in 46 (20%) and unknown in 1 (<1%); FISH in 14 (6%) and PCR-based in 12 (5%). NanoString, Sanger sequencing and chromosome microarray were each utilized once (<1%). Fifty-four different fusion partners were identified, 39 (72%) of which were unique occurrences. CONCLUSIONS: The most common local testing approach was RNA-based NGS. Many different NTRK gene fusions were identified with most occurring at low frequency. This supports the need for validated and appropriate testing methodologies that work agnostic of fusion partners.


Assuntos
Glicoproteínas de Membrana/genética , Neoplasias/tratamento farmacológico , Proteínas de Fusão Oncogênica/genética , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Receptor trkA/genética , Receptor trkB/genética , Receptor trkC/genética , Adulto , Criança , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Técnicas e Procedimentos Diagnósticos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Masculino , Análise em Microsséries , Neoplasias/genética , Seleção de Pacientes , Medicina de Precisão , Análise de Sequência de DNA , Análise de Sequência de RNA
3.
Genome Med ; 12(1): 29, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188505

RESUMO

BACKGROUND: In cancer, normal epigenetic patterns are disturbed and contribute to gene expression changes, disease onset, and progression. The cancer epigenome is composed of the epigenetic patterns present in the tumor-initiating cell at the time of transformation, and the tumor-specific epigenetic alterations that are acquired during tumor initiation and progression. The precise dissection of these two components of the tumor epigenome will facilitate a better understanding of the biological mechanisms underlying malignant transformation. Chronic lymphocytic leukemia (CLL) originates from differentiating B cells, which undergo extensive epigenetic programming. This poses the challenge to precisely determine the epigenomic ground state of the cell-of-origin in order to identify CLL-specific epigenetic aberrations. METHODS: We developed a linear regression model, methylome-based cell-of-origin modeling (Methyl-COOM), to map the cell-of-origin for individual CLL patients based on the continuum of epigenomic changes during normal B cell differentiation. RESULTS: Methyl-COOM accurately maps the cell-of-origin of CLL and identifies CLL-specific aberrant DNA methylation events that are not confounded by physiologic epigenetic B cell programming. Furthermore, Methyl-COOM unmasks abnormal action of transcription factors, altered super-enhancer activities, and aberrant transcript expression in CLL. Among the aberrantly regulated transcripts were many genes that have previously been implicated in T cell biology. Flow cytometry analysis of these markers confirmed their aberrant expression on malignant B cells at the protein level. CONCLUSIONS: Methyl-COOM analysis of CLL identified disease-specific aberrant gene regulation. The aberrantly expressed genes identified in this study might play a role in immune-evasion in CLL and might serve as novel targets for immunotherapy approaches. In summary, we propose a novel framework for in silico modeling of reference DNA methylomes and for the identification of cancer-specific epigenetic changes, a concept that can be broadly applied to other human malignancies.


Assuntos
Linhagem da Célula , Epigenoma , Leucemia Linfocítica Crônica de Células B/genética , Modelos Genéticos , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular , Hematopoiese Clonal , Elementos Facilitadores Genéticos , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição , Transcriptoma
4.
Semin Cancer Biol ; 51: 1-11, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29427646

RESUMO

Deregulated transcriptional control caused by aberrant DNA methylation and/or histone modifications is a hallmark of cancer cells. In chronic lymphocytic leukemia (CLL), the most common adult leukemia, the epigenetic 'landscape' has added a new layer of complexity to our understanding of this clinically and biologically heterogeneous disease. Early studies identified aberrant DNA methylation, often based on single gene promoter analysis with both biological and clinical impact. Subsequent genome-wide profiling studies revealed differential DNA methylation between CLLs and controls and in prognostics subgroups of the disease. From these studies, it became apparent that DNA methylation in regions outside of promoters, such as enhancers, is important for the regulation of coding genes as well as for the regulation of non-coding RNAs. Although DNA methylation profiles are reportedly stable over time and in relation to therapy, a higher epigenetic heterogeneity or 'burden' is seen in more aggressive CLL subgroups, albeit as non-recurrent 'passenger' events. More recently, DNA methylation profiles in CLL analyzed in relation to differentiating normal B-cell populations revealed that the majority of the CLL epigenome reflects the epigenomes present in the cell of origin and that only a small fraction of the epigenetic alterations represents truly CLL-specific changes. Furthermore, CLL patients can be grouped into at least three clinically relevant epigenetic subgroups, potentially originating from different cells at various stages of differentiation and associated with distinct outcomes. In this review, we summarize the current understanding of the DNA methylome in CLL, the role of histone modifying enzymes, highlight insights derived from animal models and attempts made to target epigenetic regulators in CLL along with the future directions of this rapidly advancing field.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/terapia , Prognóstico
5.
Nat Commun ; 8(1): 2126, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259247

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative disorder of early childhood characterized by mutations activating RAS signaling. Established clinical and genetic markers fail to fully recapitulate the clinical and biological heterogeneity of this disease. Here we report DNA methylome analysis and mutation profiling of 167 JMML samples. We identify three JMML subgroups with unique molecular and clinical characteristics. The high methylation group (HM) is characterized by somatic PTPN11 mutations and poor clinical outcome. The low methylation group is enriched for somatic NRAS and CBL mutations, as well as for Noonan patients, and has a good prognosis. The intermediate methylation group (IM) shows enrichment for monosomy 7 and somatic KRAS mutations. Hypermethylation is associated with repressed chromatin, genes regulated by RAS signaling, frequent co-occurrence of RAS pathway mutations and upregulation of DNMT1 and DNMT3B, suggesting a link between activation of the DNA methylation machinery and mutational patterns in JMML.


Assuntos
Metilação de DNA , Leucemia Mielomonocítica Juvenil/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Antineoplásicos/uso terapêutico , Biópsia , Criança , Pré-Escolar , Cromatina/genética , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Análise Mutacional de DNA , Epigenômica , Feminino , Regulação Leucêmica da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Leucemia Mielomonocítica Juvenil/mortalidade , Leucemia Mielomonocítica Juvenil/patologia , Leucemia Mielomonocítica Juvenil/terapia , Masculino , Mutação , Síndrome de Noonan/patologia , Prognóstico , Estudos Prospectivos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas c-cbl , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Regulação para Cima , DNA Metiltransferase 3B
6.
Epigenetics ; 11(2): 110-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26891149

RESUMO

A-kinase anchor protein 12 (AKAP12) is a regulator of protein kinase A and protein kinase C signaling, acting downstream of RAS. Epigenetic silencing of AKAP12 has been demonstrated in different cancer entities and this has been linked to the process of tumorigenesis. Here, we used quantitative high-resolution DNA methylation measurement by MassARRAY to investigate epigenetic regulation of all three AKAP12 promoters (i.e., α, ß, and γ) within a large cohort of juvenile myelomonocytic leukemia (JMML) patient samples. The AKAP12α promoter shows DNA hypermethylation in JMML samples, which is associated with decreased AKAP12α expression. Promoter methylation of AKAP12α correlates with older age at diagnosis, elevated levels of fetal hemoglobin and poor prognosis. In silico screening for transcription factor binding motifs around the sites of most pronounced methylation changes in the AKAP12α promoter revealed highly significant scores for GATA-2/-1 sequence motifs. Both transcription factors are known to be involved in the haematopoietic differentiation process. Methylation of a reporter construct containing this region resulted in strong suppression of AKAP12 promoter activity, suggesting that DNA methylation might be involved in the aberrant silencing of the AKAP12 promoter in JMML. Exposure to DNMT- and HDAC-inhibitors reactivates AKAP12α expression in vitro, which could potentially be a mechanism underlying clinical treatment responses upon demethylating therapy. Together, these data provide evidence for epigenetic silencing of AKAP12α in JMML and further emphasize the importance of dysregulated RAS signaling in JMML pathogenesis.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ciclo Celular/genética , Metilação de DNA , Inativação Gênica , Leucemia Mielomonocítica Juvenil/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Pré-Escolar , Feminino , Genes ras , Humanos , Lactente , Masculino , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...