Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8210, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097563

RESUMO

Prebiotics are defined as non-digestible dietary components that promote the growth of beneficial gut microorganisms. In many cases, however, this capability is not systematically evaluated. Here, we develop a methodology for determining prebiotic-responsive bacteria using the popular dietary supplement inulin. We first identify microbes with a capacity to bind inulin using mesoporous silica nanoparticles functionalized with inulin. 16S rRNA gene amplicon sequencing of sorted cells revealed that the ability to bind inulin was widespread in the microbiota. We further evaluate which taxa are metabolically stimulated by inulin and find that diverse taxa from the phyla Firmicutes and Actinobacteria respond to inulin, and several isolates of these taxa can degrade inulin. Incubation with another prebiotic, xylooligosaccharides (XOS), in contrast, shows a more robust bifidogenic effect. Interestingly, the Coriobacteriia Eggerthella lenta and Gordonibacter urolithinfaciens are indirectly stimulated by the inulin degradation process, expanding our knowledge of inulin-responsive bacteria.


Assuntos
Microbioma Gastrointestinal , Inulina , Inulina/metabolismo , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias , Prebióticos
2.
Commun Biol ; 5(1): 1261, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396911

RESUMO

Ectomycorrhizal fungi live in close association with their host plants and form complex interactions with bacterial/archaeal communities in soil. We investigated whether abundant or rare ectomycorrhizal fungi on root-tips of young beech trees (Fagus sylvatica) shape bacterial/archaeal communities. We sequenced 16S rRNA genes and fungal internal transcribed spacer regions of individual root-tips and used ecological networks to detect the tendency of certain assemblies of fungal and bacterial/archaeal taxa to inhabit the same root-tip (i.e. modularity). Individual ectomycorrhizal root-tips hosted distinct fungal communities associated with unique bacterial/archaeal communities. The structure of the fungal-bacterial/archaeal association was determined by both, dominant and rare fungi. Integrating our data in a conceptual framework suggests that the effect of rare fungi on the bacterial/archaeal communities of ectomycorrhizal root-tips contributes to assemblages of bacteria/archaea on root-tips. This highlights the potential impact of complex fine-scale interactions between root-tip associated fungi and other soil microorganisms for the ectomycorrhizal symbiosis.


Assuntos
Fagus , Micorrizas , Micorrizas/genética , Fagus/genética , Fagus/microbiologia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética , Solo , Archaea/genética
3.
New Phytol ; 232(6): 2457-2474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34196001

RESUMO

Ectomycorrhizal plants trade plant-assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided 15 N-labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a 13 CO2 atmosphere. We analysed the short-term distribution of 13 C and 15 N in the root system with isotope-ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more 13 C to root parts that received more 15 N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of 13 C and 15 N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N-delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant-assimilated C and fungus-delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale.


Assuntos
Fagus , Micorrizas , Carbono , Nitrogênio , Raízes de Plantas
4.
Plant Cell Environ ; 42(12): 3253-3263, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31335973

RESUMO

Trees allocate C from sources to sinks by way of a series of processes involving carbohydrate transport and utilization. Yet these dynamics are not well characterized in trees, and it is unclear how these dynamics will respond to a warmer world. Here, we conducted a warming and pulse-chase experiment on Eucalyptus parramattensis growing in a whole-tree chamber system to test whether warming impacts carbon allocation by increasing the speed of carbohydrate dynamics. We pulse-labelled large (6-m tall) trees with 13 C-CO2 to follow recently fixed C through different organs by using compound-specific isotope analysis of sugars. We then compared concentrations and mean residence times of individual sugars between ambient and warmed (+3°C) treatments. Trees dynamically allocated 13 C-labelled sugars throughout the aboveground-belowground continuum. We did not, however, find a significant treatment effect on C dynamics, as sugar concentrations and mean residence times were not altered by warming. From the canopy to the root system, 13 C enrichment of sugars decreased, and mean residence times increased, reflecting dilution and mixing of recent photoassimilates with older reserves along the transport pathway. Our results suggest that a locally endemic eucalypt was seemingly able to adjust its physiology to warming representative of future temperature predictions for Australia.


Assuntos
Isótopos de Carbono/metabolismo , Mudança Climática , Eucalyptus/fisiologia , Açúcares/metabolismo , Árvores/fisiologia , Carbono/metabolismo , Floema/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Fatores de Tempo
5.
Front Microbiol ; 10: 168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863368

RESUMO

Plant roots release recent photosynthates into the rhizosphere, accelerating decomposition of organic matter by saprotrophic soil microbes ("rhizosphere priming effect") which consequently increases nutrient availability for plants. However, about 90% of all higher plant species are mycorrhizal, transferring a significant fraction of their photosynthates directly to their fungal partners. Whether mycorrhizal fungi pass on plant-derived carbon (C) to bacteria in root-distant soil areas, i.e., incite a "hyphosphere priming effect," is not known. Experimental evidence for C transfer from mycorrhizal hyphae to soil bacteria is limited, especially for ectomycorrhizal systems. As ectomycorrhizal fungi possess enzymatic capabilities to degrade organic matter themselves, it remains unclear whether they cooperate with soil bacteria by providing photosynthates, or compete for available nutrients. To investigate a possible C transfer from ectomycorrhizal hyphae to soil bacteria, and its response to changing nutrient availability, we planted young beech trees (Fagus sylvatica) into "split-root" boxes, dividing their root systems into two disconnected soil compartments. Each of these compartments was separated from a litter compartment by a mesh penetrable for fungal hyphae, but not for roots. Plants were exposed to a 13C-CO2-labeled atmosphere, while 15N-labeled ammonium and amino acids were added to one side of the split-root system. We found a rapid transfer of recent photosynthates via ectomycorrhizal hyphae to bacteria in root-distant soil areas. Fungal and bacterial phospholipid fatty acid (PLFA) biomarkers were significantly enriched in hyphae-exclusive compartments 24 h after 13C-CO2-labeling. Isotope imaging with nanometer-scale secondary ion mass spectrometry (NanoSIMS) allowed for the first time in situ visualization of plant-derived C and N taken up by an extraradical fungal hypha, and in microbial cells thriving on hyphal surfaces. When N was added to the litter compartments, bacterial biomass, and the amount of incorporated 13C strongly declined. Interestingly, this effect was also observed in adjacent soil compartments where added N was only available for bacteria through hyphal transport, indicating that ectomycorrhizal fungi were acting on soil bacteria. Together, our results demonstrate that (i) ectomycorrhizal hyphae rapidly transfer plant-derived C to bacterial communities in root-distant areas, and (ii) this transfer promptly responds to changing soil nutrient conditions.

6.
Tree Physiol ; 38(12): 1764-1778, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376128

RESUMO

Non-structural carbohydrates (NSCs), the stored products of photosynthesis, building blocks for growth and fuel for respiration, are central to plant metabolism, but their measurement is challenging. Differences in methods and procedures among laboratories can cause results to vary widely, limiting our ability to integrate and generalize patterns in plant carbon balance among studies. A recent assessment found that NSC concentrations measured for a common set of samples can vary by an order of magnitude, but sources for this variability were unclear. We measured a common set of nine plant material types, and two synthetic samples with known NSC concentrations, using a common protocol for sugar extraction and starch digestion, and three different sugar quantification methods (ion chromatography, enzyme, acid) in six laboratories. We also tested how sample handling, extraction solvent and centralizing parts of the procedure in one laboratory affected results. Non-structural carbohydrate concentrations measured for synthetic samples were within about 11.5% of known values for all three methods. However, differences among quantification methods were the largest source of variation in NSC measurements for natural plant samples because the three methods quantify different NSCs. The enzyme method quantified only glucose, fructose and sucrose, with ion chromatography we additionally quantified galactose, while the acid method quantified a large range of mono- and oligosaccharides. For some natural samples, sugars quantified with the acid method were two to five times higher than with other methods, demonstrating that trees allocate carbon to a range of sugar molecules. Sample handling had little effect on measurements, while ethanol sugar extraction improved accuracy over water extraction. Our results demonstrate that reasonable accuracy of NSC measurements can be achieved when different methods are used, as long as protocols are robust and standardized. Thus, we provide detailed protocols for the extraction, digestion and quantification of NSCs in plant samples, which should improve the comparability of NSC measurements among laboratories.


Assuntos
Carboidratos/análise , Plantas/química , Ácidos , Carboidratos/química , Técnicas de Química Analítica , Cromatografia por Troca Iônica , Enzimas , Manejo de Espécimes , Amido/análise , Açúcares/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...