Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(12): e0121123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054733

RESUMO

IMPORTANCE: Fumonisins can cause diseases in animals and humans consuming Fusarium-contaminated food or feed. The search for microbes capable of fumonisin degradation, or for enzymes that can detoxify fumonisins, currently relies primarily on chemical detection methods. Our constructed fumonisin B1-sensitive yeast strain can be used to phenotypically detect detoxification activity and should be useful in screening for novel fumonisin resistance genes and to elucidate fumonisin metabolism and resistance mechanisms in fungi and plants, and thereby, in the long term, help to mitigate the threat of fumonisins in feed and food.


Assuntos
Fumonisinas , Fusarium , Humanos , Animais , Fumonisinas/toxicidade , Fumonisinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ração Animal , Fusarium/genética , Fusarium/metabolismo
2.
Plant Biotechnol J ; 21(1): 109-121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121345

RESUMO

Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley.


Assuntos
Aegilops , Fusarium , Triticum/genética , Triticum/metabolismo , Glucosiltransferases/genética , Difosfato de Uridina , Melhoramento Vegetal , Doenças das Plantas/genética , Resistência à Doença/genética
3.
J Fungi (Basel) ; 8(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36294594

RESUMO

The plant pathogen Fusarium graminearum is a proficient producer of mycotoxins and other in part still unknown secondary metabolites, some of which might act as virulence factors on wheat. The PKS15 gene is expressed only in planta, so far hampering the identification of an associated metabolite. Here we combined the activation of silent gene clusters by chromatin manipulation (kmt6) with blocking the metabolic flow into the competing biosynthesis of the two major mycotoxins deoxynivalenol and zearalenone. Using an untargeted metabolomics approach, two closely related metabolites were found in triple mutants (kmt6 tri5 pks4,13) deficient in production of the major mycotoxins deoxynivalenol and zearalenone, but not in strains with an additional deletion in PKS15 (kmt6 tri5 pks4,13 pks15). Characterization of the metabolites, by LC-HRMS/MS in combination with a stable isotope-assisted tracer approach, revealed that they are likely hybrid polyketides comprising a polyketide part consisting of malonate-derived acetate units and a structurally deviating part. We propose the names gramiketide A and B for the two metabolites. In a biological experiment, both gramiketides were formed during infection of wheat ears with wild-type but not with pks15 mutants. The formation of the two gramiketides during infection correlated with that of the well-known virulence factor deoxynivalenol, suggesting that they might play a role in virulence.

4.
Toxins (Basel) ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35878183

RESUMO

Oat is susceptible to several Fusarium species that cause contamination with different trichothecene mycotoxins. The molecular mechanisms behind Fusarium resistance in oat have yet to be elucidated. In the present work, we identified and characterised two oat UDP-glucosyltransferases orthologous to barley HvUGT13248. Overexpression of the latter in wheat had been shown previously to increase resistance to deoxynivalenol (DON) and nivalenol (NIV) and to decrease disease the severity of both Fusarium head blight and Fusarium crown rot. Both oat genes are highly inducible by the application of DON and during infection with Fusarium graminearum. Heterologous expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae conferred high levels of resistance to DON, NIV and HT-2 toxins, but not C4-acetylated trichothecenes (T-2, diacetoxyscirpenol). Recombinant enzymes AsUGT1 and AsUGT2 expressed in Escherichia coli rapidly lost activity upon purification, but the treatment of whole cells with the toxin clearly demonstrated the ability to convert DON into DON-3-O-glucoside. The two UGTs could therefore play an important role in counteracting the Fusarium virulence factor DON in oat.


Assuntos
Fusarium , Micotoxinas , Avena/metabolismo , Fusarium/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Micotoxinas/metabolismo , Proteínas de Plantas/metabolismo , Tricotecenos , Difosfato de Uridina/metabolismo
5.
Front Pharmacol ; 10: 1160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680951

RESUMO

The mycotoxin zearalenone (ZEN) is produced by many plant pathogenic Fusarium species. It is well known for its estrogenic activity in humans and animals, but whether ZEN has a role in plant-pathogen interaction and which process it is targeting in planta was so far unclear. We found that treatment of Arabidopsis thaliana seedlings with ZEN induced transcription of the AtHSP90.1 gene. This heat shock protein (HSP) plays an important role in plant-pathogen interaction, assisting in stability and functionality of various disease resistance gene products. Inhibition of HSP90 ATPase activity impairs functionality. Because HSP90 inhibitors are known to induce HSP90 gene expression and due to the structural similarity with the known HSP90 inhibitor radicicol (RAD), we tested whether ZEN and its phase I metabolites α- and ß-zearalenol are also HSP90 ATPase inhibitors. Indeed, AtHSP90.1 and wheat TaHSP90-2 were inhibited by ZEN and ß-zearalenol, while α-zearalenol was almost inactive. Plants can efficiently glycosylate ZEN and α/ß-zearalenol. We therefore tested whether glucosylation has an effect on the inhibitory activity of these metabolites. Expression of the A. thaliana glucosyltransferase UGT73C6 conferred RAD resistance to a sensitive yeast strain. Glucosylation of RAD, ZEN, and α/ß-zearalenol abolished the in vitro inhibitory activity with recombinant HSP90 purified from Escherichia coli. In conclusion, the mycotoxin ZEN has a very prominent target in plants, HSP90, but it can be inactivated by glycosylation. This may explain why there is little evidence for a virulence function of ZEN in host plants.

6.
Front Plant Sci ; 10: 1072, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552072

RESUMO

Fusarium graminearum is a plant pathogenic fungus which is able to infect wheat and other economically important cereal crop species. The role of ethylene in the interaction with host plants is unclear and controversial. We have analyzed the inventory of genes with a putative function in ethylene production or degradation of the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC). F. graminearum, in contrast to other species, does not contain a candidate gene encoding ethylene-forming enzyme. Three genes with similarity to ACC synthases exist; heterologous expression of these did not reveal enzymatic activity. The F. graminearum genome contains in addition two ACC deaminase candidate genes. We have expressed both genes in E. coli and characterized the enzymatic properties of the affinity-purified products. One of the proteins had indeed ACC deaminase activity, with kinetic properties similar to ethylene-stress reducing enzymes of plant growth promoting bacteria. The other candidate was inactive with ACC but turned out to be a d-cysteine desulfhydrase. Since it had been reported that ethylene insensitivity in transgenic wheat increased Fusarium resistance and reduced the content of the mycotoxin deoxynivalenol (DON) in infected wheat, we generated single and double knockout mutants of both genes in the F. graminearum strain PH-1. No statistically significant effect of the gene disruptions on fungal spread or mycotoxin content was detected, indicating that the ability of the fungus to manipulate the production of the gaseous plant hormones ethylene and H2S is dispensable for full virulence.

7.
Food Chem ; 279: 303-311, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611495

RESUMO

Deoxynivalenol (DON) is considered to be one of the most important contaminants in cereals and food commodities produced thereof. So far it is not clear i) to which extent DON is degraded during baking and ii) if a degradation results in reduced toxicity. We have elucidated the fate of DON during baking of crackers, biscuits and bread, which were produced from fortified dough and processed under pilot plant conditions. Untargeted stable isotope assisted liquid chromatography (LC) high resolution mass spectrometry was used to determine all extractable degradation products. Targeted LC - tandem mass spectrometry based quantification revealed that DON was partially degraded to isoDON (1.3-3.9%), norDON B (0.2-0.9%) and norDON C (0.3-1.2%). A DON degradation of 6% (crackers), 5% (biscuits) and 2% (bread), respectively, was observed. In vitro translation experiments indicate that isoDON is less toxic than DON.


Assuntos
Pão/análise , Contaminação de Alimentos/análise , Espectrometria de Massas em Tandem/métodos , Tricotecenos/análise , Isótopos de Carbono , Cromatografia Líquida/métodos , Marcação por Isótopo , Reprodutibilidade dos Testes , Tricotecenos/metabolismo
8.
Front Microbiol ; 9: 1954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258410

RESUMO

In filamentous fungi such as Fusarium graminearum, disruption of multiple genes of interest in the same strain (e.g., to test for redundant gene function) is a difficult task due to the limited availability of reliable selection markers. We have created a series of transformation vectors that allow antibiotic-based selection of transformants and subsequent negative selection for marker removal using thymidine kinase fusions combined with the Cre-loxP system. The fusion genes contain commonly used C-terminal drug resistance markers, either nptII (G418), nat1 (nourseothricin), or hph (hygromycin B). These resistance genes are fused to the sequence encoding Herpes simplex virus thymidine kinase (HSVtk). Despite the presence of the 1 kb HSVtk gene (about ∼30% increase in total marker size), there is only a slight reduction in transformation efficiency on a molar basis. The fusion genes expressed under the Trichoderma pyruvate kinase (PKI) promoter also confer antibiotic resistance in Escherichia coli, allowing straightforward construction of disruption plasmids. For removal of the loxP flanked resistance cassettes, protoplasts of transformants are directly treated with purified Cre recombinase protein. Loss of the HSVtk containing cassette is selected by restoration of resistance to 5-fluoro-2-deoxyuridine (FdU). As a proof of principle, we demonstrated the efficiency of the HSVtk-based marker removal in Fusarium by reversing the disruption phenotype of the gene responsible for production of the red pigment aurofusarin. We first disrupted the FgPKS12 gene via integration of the loxP-flanked HSVtk-nptII cassette into the promoter or the first intron, thereby generating transformants with a white mycelium phenotype. Using Cre recombinase and FdU, the selection marker was subsequently removed, and the resulting transformants regained red pigmentation despite the remaining loxP site. We also found that it is possible to remove several unselected loxP-flanked cassettes with a single Cre protein treatment, as long as one of them contains a negative selectable HSVtk cassette. The negative selection system can also be used to introduce allele swaps into strains without leaving marker sequences, by first disrupting the gene of interest and then complementing the deletion in situ with genomic DNA containing a different allele.

9.
Org Biomol Chem ; 16(12): 2043-2048, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29465119

RESUMO

The Fusarium metabolite culmorin (1) is receiving increased attention as an "emerging mycotoxin". It co-occurs with trichothecene mycotoxins and potentially influences their toxicity. Its ecological role and fate in plants is unknown. We synthesized sulfated and glucosylated culmorin conjugates as potential metabolites, which are expected to be formed in planta, and used them as reference compounds. An efficient procedure for the synthesis of culmorin sulfates was developed. Diastereo- and regioselective glucosylation of culmorin (1) was achieved by exploiting or preventing unexpected acyl transfer when using different glucosyl donors. The treatment of a wheat suspension culture with culmorin (1) revealed an in planta conversion of culmorin into culmorin-8-glucoside (6) and culmorin acetate, but no sulfates or culmorin-11-glucoside (7) was found. The treatment of wheat cells with the fungal metabolite 11-acetylculmorin (2) revealed its rapid deacetylation, but also showed the formation of 11-acetylculmorin-8-glucoside (8). These results show that plants are capable of extensively metabolizing culmorin.


Assuntos
Sesquiterpenos/síntese química , Sesquiterpenos/farmacologia , Triticum/efeitos dos fármacos , Células Cultivadas , Fusarium/metabolismo , Glucose/química , Glicosilação , Espectroscopia de Ressonância Magnética , Micotoxinas/farmacologia , Sesquiterpenos/metabolismo , Estereoisomerismo , Sulfatos/química , Triticum/citologia
10.
Toxicol Lett ; 284: 205-212, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277571

RESUMO

A new type A trichothecene mycotoxin, NX-2, was previously reported to be produced by North American isolates of the cereal pathogen Fusarium graminearum. Here we describe the isolation and structural characterization of a rearrangement product, called NX2-M1, and related compounds with different acetylation patterns (NX3-M1 and NX4-M1). In the NX-M1 derivatives, the epoxide ring is opened, and a covalent bridge between C-10 and C-12 of the trichothecene backbone is formed. In vitro translation assays showed that NX3-M1 is less toxic for eukaryotic ribosomes than NX-3. NX3-M1 also has a greatly reduced cytotoxic potential on two tested human colon cell lines. Formation of NX3-M1 can therefore be regarded as a detoxification reaction. The related F. graminearum mycotoxin deoxynivalenol (DON), which is frequently occurring worldwide, is very stable during food processing. Testing NX-3 at different pH-values and temperature conditions, as well as under conditions that simulate the storage of infected grains and bread-making process, revealed a strongly reduced stability of NX-3 and concurrent formation of NX3-M1. Although the NX-3 formed in planta is as toxic as DON, the extensive formation of the non-toxic rearrangement product should be taken into account for risk assessment of this emerging food contaminant.


Assuntos
Grão Comestível , Manipulação de Alimentos , Fusarium/crescimento & desenvolvimento , Tricotecenos , Sobrevivência Celular/efeitos dos fármacos , Colo/citologia , Colo/efeitos dos fármacos , Grão Comestível/química , Grão Comestível/microbiologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Armazenamento de Alimentos , Fusarium/metabolismo , Células HT29 , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Relação Estrutura-Atividade , Tricotecenos/química , Tricotecenos/isolamento & purificação , Tricotecenos/toxicidade
11.
J Exp Bot ; 68(9): 2187-2197, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407119

RESUMO

Fusarium Head Blight is a disease of cereal crops that causes severe yield losses and mycotoxin contamination of grain. The main causal pathogen, Fusarium graminearum, produces the trichothecene toxins deoxynivalenol or nivalenol as virulence factors. Nivalenol-producing isolates are most prevalent in Asia but co-exist with deoxynivalenol producers in lower frequency in North America and Europe. Previous studies identified a barley UDP-glucosyltransferase, HvUGT13248, that efficiently detoxifies deoxynivalenol, and when expressed in transgenic wheat results in high levels of type II resistance against deoxynivalenol-producing F. graminearum. Here we show that HvUGT13248 is also capable of converting nivalenol into the non-toxic nivalenol-3-O-ß-d-glucoside. We describe the enzymatic preparation of a nivalenol-glucoside standard and its use in development of an analytical method to detect the nivalenol-glucoside conjugate. Recombinant Escherichia coli expressing HvUGT13248 glycosylates nivalenol more efficiently than deoxynivalenol. Overexpression in yeast, Arabidopsis thaliana, and wheat leads to increased nivalenol resistance. Increased ability to convert nivalenol to nivalenol-glucoside was observed in transgenic wheat, which also exhibits type II resistance to a nivalenol-producing F. graminearum strain. Our results demonstrate the HvUGT13248 can act to detoxify deoxynivalenol and nivalenol and provide resistance to deoxynivalenol- and nivalenol-producing Fusarium.


Assuntos
Fusarium/metabolismo , Glucosiltransferases/genética , Hordeum/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Tricotecenos/metabolismo , Resistência à Doença/genética , Glucosiltransferases/metabolismo , Hordeum/enzimologia , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
12.
Toxins (Basel) ; 8(10)2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27754401

RESUMO

Trichothecenes are a class of structurally diverse mycotoxins with more than 200 naturally occurring compounds. Previously, a new compound, pentahydroxyscirpene (PHS), was reported as a byproduct of a nivalenol producing Fusarium strain, IFA189. PHS contains a hydroxy group at C-8 instead of the keto group of type B trichothecenes. In this work, we demonstrate that IFA189 belongs to the species Fusarium kyushuense using molecular tools. Production of PHS in vitro was also observed for several isolates of other Fusarium species producing nivalenol. Furthermore, we report the formation of 4-acetyl-PHS by F. kyushuense on inoculated rice. Wheat ears of the variety Remus were infected with IFA189 and the in planta production of PHS was confirmed. Natural occurrence of PHS was verified in barley samples from the Czech Republic using a liquid chromatographic-tandem mass spectrometric method validated for this purpose. Toxicity of PHS to wheat ribosomes was evaluated with a coupled in vitro transcription and translation assay, which showed that PHS inhibits protein biosynthesis slightly less than nivalenol and deoxynivalenol.


Assuntos
Fusarium/metabolismo , Oryza/microbiologia , Tricotecenos/metabolismo , Triticum/microbiologia , DNA Fúngico/análise , Contaminação de Alimentos/análise , Fusarium/genética , Hordeum/química , Hordeum/microbiologia , Oryza/química , Ribossomos/efeitos dos fármacos , Tricotecenos/toxicidade , Triticum/química
13.
Sci Rep ; 6: 33854, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659167

RESUMO

The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority.

14.
Toxins (Basel) ; 8(1)2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26712789

RESUMO

Increasing frequencies of 3-acetyl-deoxynivalenol (3-ADON)-producing strains of Fusarium graminearum (3-ADON chemotype) have been reported in North America and Asia. 3-ADON is nearly nontoxic at the level of the ribosomal target and has to be deacetylated to cause inhibition of protein biosynthesis. Plant cells can efficiently remove the acetyl groups of 3-ADON, but the underlying genes are yet unknown. We therefore performed a study of the family of candidate carboxylesterases (CXE) genes of the monocot model plant Brachypodium distachyon. We report the identification and characterization of the first plant enzymes responsible for deacetylation of trichothecene toxins. The product of the BdCXE29 gene efficiently deacetylates T-2 toxin to HT-2 toxin, NX-2 to NX-3, both 3-ADON and 15-acetyl-deoxynivalenol (15-ADON) into deoxynivalenol and, to a lesser degree, also fusarenon X into nivalenol. The BdCXE52 esterase showed lower activity than BdCXE29 when expressed in yeast and accepts 3-ADON, NX-2, 15-ADON and, to a limited extent, fusarenon X as substrates. Expression of these Brachypodium genes in yeast increases the toxicity of 3-ADON, suggesting that highly similar genes existing in crop plants may act as susceptibility factors in Fusarium head blight disease.


Assuntos
Brachypodium/genética , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tricotecenos/metabolismo , Acetilação , Brachypodium/enzimologia , Genes de Plantas , Saccharomyces cerevisiae/genética , Tricotecenos/química , Tricotecenos/toxicidade
15.
Toxins (Basel) ; 7(11): 4706-29, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26569307

RESUMO

Recently, deoxynivalenol-3-sulfate (DON-3-sulfate) was proposed as a major DON metabolite in poultry. In the present work, the first LC-MS/MS based method for determination of DON-3-sulfate, deepoxy-DON-3-sulfate (DOM-3-sulfate), DON, DOM, DON sulfonates 1, 2, 3, and DOM sulfonate 2 in excreta samples of chickens and turkeys was developed and validated. To this end, DOM-3-sulfate was chemically synthesized and characterized by NMR and LC-HR-MS/MS measurements. Application of the method to excreta and chyme samples of four feeding trials with turkeys, chickens, pullets, and roosters confirmed DON-3-sulfate as the major DON metabolite in all poultry species studied. Analogously to DON-3-sulfate, DOM-3-sulfate was formed after oral administration of DOM both in turkeys and in chickens. In addition, pullets and roosters metabolized DON into DOM-3-sulfate. In vitro transcription/translation assays revealed DOM-3-sulfate to be 2000 times less toxic on the ribosome than DON. Biological recoveries of DON and DOM orally administered to broiler chickens, turkeys, and pullets were 74%-106% (chickens), 51%-72% (roosters), and 131%-151% (pullets). In pullets, DON-3-sulfate concentrations increased from jejunum chyme samples to excreta samples by a factor of 60. This result, put into context with earlier studies, indicates fast and efficient absorption of DON between crop and jejunum, conversion to DON-3-sulfate in intestinal mucosa, liver, and possibly kidney, and rapid elimination into excreta via bile and urine.


Assuntos
Galinhas/metabolismo , Micotoxinas/farmacocinética , Tricotecenos/farmacocinética , Perus/metabolismo , Animais , Biotransformação , Fezes/química , Feminino , Jejuno/química , Jejuno/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Micotoxinas/síntese química , Micotoxinas/toxicidade , Reprodutibilidade dos Testes , Sulfatos/metabolismo , Distribuição Tecidual , Tricotecenos/síntese química , Tricotecenos/toxicidade
16.
Environ Microbiol ; 17(8): 2588-600, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25403493

RESUMO

The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, which produced none of the known trichothecene mycotoxins despite causing normal disease symptoms. In rice cultures, a new trichothecene mycotoxin (named NX-2) was characterized by liquid chromatography-tandem mass spectrometry. Nuclear magnetic resonance measurements identified NX-2 as 3α-acetoxy-7α,15-dihydroxy-12,13-epoxytrichothec-9-ene. Compared with the well-known 3-acetyl-deoxynivalenol (3-ADON), it lacks the keto group at C-8 and hence is a type A trichothecene. Wheat ears inoculated with the isolated strains revealed a 10-fold higher contamination with its deacetylated form, named NX-3, (up to 540 mg kg(-1) ) compared with NX-2. The toxicities of the novel mycotoxins were evaluated utilizing two in vitro translation assays and the alga Chlamydomonas reinhardtii. NX-3 inhibits protein biosynthesis to almost the same extent as the prominent mycotoxin deoxynivalenol, while NX-2 is far less toxic, similar to 3-ADON. Genetic analysis revealed a different TRI1 allele in the N-isolates, which was verified to be responsible for the difference in hydroxylation at C-8.


Assuntos
Grão Comestível/microbiologia , Contaminação de Alimentos/análise , Fusarium/metabolismo , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Cromatografia Líquida , Fusarium/genética , Fusarium/isolamento & purificação , Genótipo , Micotoxinas/biossíntese , Micotoxinas/química , América do Norte , Oryza/microbiologia , Tricotecenos/química , Tricotecenos/metabolismo , Triticum/microbiologia
17.
Anal Bioanal Chem ; 407(4): 1033-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492089

RESUMO

We report the identification of deoxynivalenol-3-sulfate and deoxynivalenol-15-sulfate as two novel metabolites of the trichothecene mycotoxin deoxynivalenol in wheat. Wheat ears which were either artificially infected with Fusarium graminearum or directly treated with the major Fusarium toxin deoxynivalenol (DON) were sampled 96 h after treatment. Reference standards, which have been chemically synthesized and confirmed by NMR, were used to establish a liquid chromatography-electrospray ionization (LC-ESI)-MS/MS-based "dilute and shoot" method for the detection, unambiguous identification, and quantification of both sulfate conjugates in wheat extracts. Using this approach, detection limits of 0.003 mg/kg for deoxynivalenol-3-sulfate and 0.002 mg/kg for deoxynivalenol-15-sulfate were achieved. Matrix-matched calibration was used for the quantification of DON-sulfates in the investigated samples. In DON-treated samples, DON-3-sulfate was detected in the range of 0.29-1.4 mg/kg fresh weight while DON-15-sulfate concentrations were significantly lower (range 0.015-0.061 mg/kg fresh weight). In Fusarium-infected wheat samples, DON-3-sulfate was the only detected sulfate conjugate (range 0.022-0.059 mg/kg fresh weight). These results clearly demonstrate the potential of wheat to form sulfate conjugates of DON. In order to test whether sulfation is a detoxification reaction in planta, we determined the ability of the sulfated DON derivatives to inhibit in vitro protein synthesis of wheat ribosomes. The results demonstrate that both DON-sulfates can be regarded as detoxification products. DON-15-sulfate was about 44× less inhibitory than the native toxin, and no toxicity was observed for DON-3-sulfate in the tested range.


Assuntos
Contaminação de Alimentos/análise , Fusarium/metabolismo , Micotoxinas/análise , Tricotecenos/análise , Triticum/química , Calibragem , Cromatografia Líquida , Estrutura Molecular , Micotoxinas/toxicidade , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Tricotecenos/toxicidade , Triticum/microbiologia
18.
Metabolomics ; 10(4): 754-769, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057268

RESUMO

Many untargeted LC-ESI-HRMS based metabolomics studies are still hampered by the large proportion of non-biological sample derived signals included in the generated raw data. Here, a novel, powerful stable isotope labelling (SIL)-based metabolomics workflow is presented, which facilitates global metabolome extraction, improved metabolite annotation and metabolome wide internal standardisation (IS). The general concept is exemplified with two different cultivation variants, (1) co-cultivation of the plant pathogenic fungi Fusarium graminearum on non-labelled and highly 13C enriched culture medium and (2) experimental cultivation under native conditions and use of globally U-13C labelled biological reference samples as exemplified with maize and wheat. Subsequent to LC-HRMS analysis of mixtures of labelled and non-labelled samples, two-dimensional data filtering of SIL specific isotopic patterns is performed to better extract truly biological derived signals together with the corresponding number of carbon atoms of each metabolite ion. Finally, feature pairs are convoluted to feature groups each representing a single metabolite. Moreover, the correction of unequal matrix effects in different sample types and the improvement of relative metabolite quantification with metabolome wide IS are demonstrated for the F. graminearum experiment. Data processing employing the presented workflow revealed about 300 SIL derived feature pairs corresponding to 87-135 metabolites in F. graminearum samples and around 800 feature pairs corresponding to roughly 350 metabolites in wheat samples. SIL assisted IS, by the use of globally U-13C labelled biological samples, reduced the median CV value from 7.1 to 3.6 % for technical replicates and from 15.1 to 10.8 % for biological replicates in the respective F. graminearum samples.

19.
Org Biomol Chem ; 12(28): 5144-50, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24903010

RESUMO

Methylthiodeoxynivalenol (MTD), a novel derivative of the trichothecene mycotoxin deoxynivalenol (DON), was prepared by applying a reliable procedure for the formal Michael addition of methanethiol to the conjugated double bond of DON. Structure elucidation revealed the preferred formation of the hemiketal form of MTD by intramolecular cyclisation between C8 and C15. Computational investigations showed a negative total reaction energy for the hemiketalisation step and its decrease in comparison with theoretical model compounds. Therefore, this structural behaviour seems to be a general characteristic of thia-Michael adducts of type B trichothecenes. MTD was shown to be less inhibitory for a reticulocyte lysate based in vitro translation system than the parent compound DON, which supports the hypothesis that trichothecenes are detoxified through thia-adduct formation during xenobiotic metabolism.


Assuntos
Micotoxinas/síntese química , Micotoxinas/toxicidade , Reticulócitos/metabolismo , Tricotecenos/síntese química , Tricotecenos/toxicidade , Animais , Biotransformação , Sistema Livre de Células , Ciclização , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Micotoxinas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Coelhos , Reticulócitos/citologia , Reticulócitos/efeitos dos fármacos , Compostos de Sulfidrila/química , Termodinâmica , Tricotecenos/química , Tricotecenos/metabolismo
20.
Front Microbiol ; 5: 759, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25628608

RESUMO

Intra- and extracellular iron-chelating siderophores produced by fungal non-ribosomal peptide synthetases have been shown to be involved in reproductive and pathogenic developmental processes and in iron and oxidative stress management. Here we report individual and combined contributions of three of these metabolites to developmental success of the destructive cereal pathogen Fusarium graminearum. In previous work, we determined that deletion of the NPS2 gene, responsible for intracellular siderophore biosynthesis, results in inability to produce sexual spores when mutants of this homothallic ascomycete are selfed. Deletion of the NPS6 gene, required for extracellular siderophore biosynthesis, does not affect sexual reproduction but results in sensitivity to iron starvation and oxidative stress and leads to reduced virulence to the host. Building on this, we report that double mutants lacking both NPS2 and NPS6 are augmented in all collective phenotypes of single deletion strains (i.e., abnormal sexual and pathogenic development, hypersensitivity to oxidative and iron-depletion stress), which suggests overlap of function. Using comparative biochemical analysis of wild-type and mutant strains, we show that NPS1, a third gene associated with siderophore biosynthesis, is responsible for biosynthesis of a second extracellular siderophore, malonichrome. nps1 mutants fail to produce this metabolite. Phenotypic characterization reveals that, although single nps1 mutants are like wild-type with respect to sexual development, hypersensitivity to ROS and iron-depletion stress, and virulence to the host, triple nps1nps2nps6 deletion strains, lacking all three siderophores, are even more impaired in these attributes than double nps2nps6 strains. Thus, combinatorial mutants lacking key iron-associated genes uncovered malonichrome function. The intimate connection between presence/absence of siderophores and resistance/sensitivity to ROS is central to sexual and pathogenic development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...