Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 43(9): 944, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28983845

RESUMO

Ian Wallis was inadvertently omitted as an author in this study. Ian Wallis assisted with the collection of the leaf samples that were used in this study, and built the chambers that the insects were housed in.

2.
J Chem Ecol ; 43(4): 411-421, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28367596

RESUMO

Insect folivores can cause extensive damage to plants. However, different plant species, and even individuals within species, can differ in their susceptibility to insect attack. Polyphenols that readily oxidize have recently gained attention as potential defenses against insect folivores. We tested the hypothesis that variation in oxidizable phenolic concentrations in Eucalyptus foliage influences feeding and survival of Paropsis atomaria (Eucalyptus leaf beetle) larvae. First we demonstrated that oxidizable phenolic concentrations vary both within and between Eucalyptus species, ranging from 0 to 61 mg.g-1 DM (0 to 81% of total phenolics), in 175 samples representing 13 Eucalyptus species. Foliage from six individuals from each of ten species of Eucalyptus were then offered to batches of newly hatched P. atomaria larvae, and feeding, instar progression and mortality of the first and second instar larvae were recorded. Although feeding and survival parameters differed dramatically between individual plants, they were not influenced by the oxidizable phenolic concentration of leaves, suggesting that P. atomaria larvae may have effective mechanisms to deal with oxidizable phenolics. Larvae feeding on plants with higher nitrogen (N) concentrations had higher survival rates and reached third instar earlier, but N concentrations did not explain most of the variation in feeding and survival. The cause of variation in eucalypt herbivory by P. atomaria larvae is therefore still unknown, although oxidizable phenolics could potentially defend eucalypt foliage against other insect herbivores.


Assuntos
Besouros/fisiologia , Eucalyptus/química , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fenóis/análise , Folhas de Planta/química , Animais , Besouros/metabolismo , Ingestão de Alimentos , Eucalyptus/metabolismo , Comportamento Alimentar , Herbivoria , Oxirredução , Fenóis/química , Fenóis/metabolismo , Folhas de Planta/metabolismo , Taninos/química
3.
J Chem Ecol ; 42(6): 523-32, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27256074

RESUMO

Polyethylene glycol (PEG) has been used to study the intake and digestion of tannin-rich plants by mammalian herbivores because it preferentially binds to tannins. However, it is not clear whether the responses of herbivores to dietary PEG is due to increased protein availability from the release of tannin-bound protein, amelioration of tannin effects, or whether PEG also may bind to other compounds and change their activity in the gut. We used three native New Zealand tree species to measure the effect of PEG on the amount of foliage eaten by invasive common brushtail possums (Trichosurus vulpecula) and on in vitro digestible nitrogen (available N). The addition of PEG increased the in vitro available N content of Weinmannia racemosa foliage, and possums ate significantly more PEG-treated foliage than untreated foliage. However, possums also ate more PEG-treated Fuchsia excorticata foliage, even though PEG did not increase in vitro available N in this species. Possums ate very little Melicytus ramiflorus, regardless of PEG treatment, even though M. ramiflorus contained the highest concentration of in vitro available N. These results prompted us to use PEG and a protein supplement, casein, to manipulate the available N concentration of diets containing ground eucalypt foliage, a well-studied food species for possums. Again, the response of possums to PEG was independent of changes in in vitro available N. In addition, altering the protein content of the diet via the addition of casein did not affect how much food the possums consumed. We conclude that the effects of PEG on dry matter intake by mammalian herbivores are not due solely to the release of tannin-bound protein. There is need for a better understanding of PEG-tannin interactions in order to ensure that the use of PEG in nutritional studies does not outstrip an understanding of its mechanisms of action.


Assuntos
Dieta , Herbivoria/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Animais , Digestão/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Masculino , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Taninos/análise , Trichosurus/metabolismo , Trichosurus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA